Crash Dump Analysis Patterns (Part 274)

January 31st, 2021

COM Exceptions are Software Exceptions and their information can be extracted from C++ Exception record as shown in this post. Here we show the case of Nested and Hidden Exceptions.

We see a COM exception raising function on Exception Stack Trace:

0:008> .exr -1
ExceptionAddress: 00007ff97800cadf (ntdll!LdrpICallHandler+0x000000000000000f)
ExceptionCode: c0000409 (Security check failure or stack buffer overrun)
ExceptionFlags: 00000001
NumberParameters: 1
Parameter[0]: 000000000000000a
Subcode: 0xa FAST_FAIL_GUARD_ICALL_CHECK_FAILURE

0:008> kL
*** Stack trace for last set context - .thread/.cxr resets it
# Child-SP          RetAddr           Call Site
00 0000009e`393f9e78 00007ff9`7802184f ntdll!LdrpICallHandler+0xf
01 0000009e`393f9e80 00007ff9`77fea889 ntdll!RtlpExecuteHandlerForException+0xf
02 0000009e`393f9eb0 00007ff9`780204be ntdll!RtlDispatchException+0x219
03 0000009e`393fa5c0 00007ff9`7800cb9e ntdll!KiUserExceptionDispatch+0x2e
04 0000009e`393fad78 00007ff9`72591030 ntdll!LdrpDispatchUserCallTarget+0xe
05 0000009e`393fad80 00007ff9`72594a52 VCRUNTIME140_APP!_CallSettingFrame+0x20
06 0000009e`393fadb0 00007ff9`7259e514 VCRUNTIME140_APP!__FrameHandler3::FrameUnwindToState+0x112
07 0000009e`393fae20 00007ff9`72593cc8 VCRUNTIME140_APP!__FrameHandler3::FrameUnwindToEmptyState+0x54
08 0000009e`393fae50 00007ff9`7259ee51 VCRUNTIME140_APP!__InternalCxxFrameHandler<__FrameHandler3>+0x10c
09 0000009e`393faeb0 00007ff8`f83ea850 VCRUNTIME140_APP!__CxxFrameHandler3+0x71
0a 0000009e`393faf00 00007ff9`780218cf PaintStudio_ViewModel!DllGetActivationFactory+0x100
0b 0000009e`393faf30 00007ff9`77f9d9b2 ntdll!RtlpExecuteHandlerForUnwind+0xf
0c 0000009e`393faf60 00007ff9`7259e9de ntdll!RtlUnwindEx+0x522
0d 0000009e`393fb670 00007ff9`72592955 VCRUNTIME140_APP!__FrameHandler3::UnwindNestedFrames+0xee
0e 0000009e`393fb760 00007ff9`72592d81 VCRUNTIME140_APP!CatchIt<__FrameHandler3>+0xb9
0f 0000009e`393fb800 00007ff9`72593dc4 VCRUNTIME140_APP!FindHandler<__FrameHandler3>+0x33d
10 0000009e`393fb970 00007ff9`7259ee51 VCRUNTIME140_APP!__InternalCxxFrameHandler<__FrameHandler3>+0x208
11 0000009e`393fb9d0 00007ff9`7802184f VCRUNTIME140_APP!__CxxFrameHandler3+0x71
12 0000009e`393fba20 00007ff9`77fea889 ntdll!RtlpExecuteHandlerForException+0xf
13 0000009e`393fba50 00007ff9`77fea643 ntdll!RtlDispatchException+0x219
14 0000009e`393fc160 00007ff9`759d3b29 ntdll!RtlRaiseException+0×153
15 0000009e`393fc9d0 00007ff9`72596220 KERNELBASE!RaiseException+0×69
16 0000009e`393fcab0 00007ff9`4919a58c VCRUNTIME140_APP!_CxxThrowException+0×90
17 0000009e`393fcb10 00007ff8`f8057628 vccorlib140_app!__abi_WinRTraiseCOMException+0×2c
18 0000009e`393fcb40 00007ff8`f8093e81 PaintStudio_ViewModel+0×7628
19 0000009e`393fcb70 00007ff8`f818f27f PaintStudio_ViewModel+0×43e81
1a 0000009e`393fcbc0 00007ff8`f818c26f PaintStudio_ViewModel+0×13f27f
1b 0000009e`393fcc90 00007ff8`f811935a PaintStudio_ViewModel+0×13c26f
1c 0000009e`393fcd40 00007ff8`f827ce8e PaintStudio_ViewModel+0xc935a
1d 0000009e`393fd110 00007ff8`f82723ab PaintStudio_ViewModel+0×22ce8e
1e 0000009e`393fd5c0 00007ff8`f83bf09d PaintStudio_ViewModel+0×2223ab
1f 0000009e`393fd7b0 00007ff8`f83c16bd PaintStudio_ViewModel+0×36f09d
20 0000009e`393fdc60 00007ff8`f80e1331 PaintStudio_ViewModel+0×3716bd
21 0000009e`393fdd10 00007ff7`2030d3b9 PaintStudio_ViewModel+0×91331
22 0000009e`393fdd50 00007ff7`202f772f PaintStudio_View+0×2d3b9
23 0000009e`393fddb0 00007ff7`202f702b PaintStudio_View+0×1772f
24 0000009e`393fdee0 00007ff7`202f520e PaintStudio_View+0×1702b
25 0000009e`393fe010 00007ff7`203266d6 PaintStudio_View+0×1520e
26 0000009e`393fe100 00007ff9`4af9d25b PaintStudio_View+0×466d6
27 0000009e`393fe140 00007ff9`4af9d1ce Windows_UI_Xaml!DirectUI::FrameworkApplicationGenerated:: OnActivatedProtected+0×4b
28 0000009e`393fe170 00007ff9`4af9ebe6 Windows_UI_Xaml!DirectUI::FrameworkApplication::DispatchGenericActivation+0×4a
29 0000009e`393fe1a0 00007ff9`4aeb39eb Windows_UI_Xaml!DirectUI::FrameworkView::OnActivated+0×186
2a (Inline Function) ——–`——– Windows_UI_Xaml!Microsoft::WRL::Callback::__l2::<lambda_772c64e6f5ddba6f719dbbabda2a0901>::operator()+0×15
2b 0000009e`393fe220 00007ff9`72cd55cf Windows_UI_Xaml!Microsoft::WRL::Details::DelegateArgTraits<long (__cdecl Windows::Foundation:: ITypedEventHandler_impl<Windows::Foundation::Internal:: AggregateType<Windows::UI::Core::CoreWindow *,Windows::UI::Core::ICoreWindow *>,IInspectable *>::*)(Windows::UI::Core::ICoreWindow *,IInspectable *)>::DelegateInvokeHelper<Windows::Foundation:: ITypedEventHandler<Windows::UI::Core::CoreWindow *,IInspectable *>,<lambda_772c64e6f5ddba6f719dbbabda2a0901>,-1,Windows::UI::Core::ICoreWindow *,IInspectable *>::Invoke+0×1b
2c 0000009e`393fe250 00007ff9`72cd8a22 twinapi_appcore!Microsoft::WRL::InvokeTraits<-2>:: InvokeDelegates<<lambda_3ad0adb09957fd62cbc86618ebbeb8fa>,Windows::Foundation:: ITypedEventHandler<Windows::ApplicationModel::Core::CoreApplicationView *,Windows::ApplicationModel::Activation::IActivatedEventArgs *> >+0×67
2d 0000009e`393fe2c0 00007ff9`76cb6a63 twinapi_appcore!Windows::ApplicationModel::Core:: CoreApplicationView::Activate+0×3d2
2e 0000009e`393fe430 00007ff9`76d1a036 rpcrt4!Invoke+0×73
2f 0000009e`393fe490 00007ff9`76c783b9 rpcrt4!Ndr64StubWorker+0xb56
30 0000009e`393feb30 00007ff9`76fd5d13 rpcrt4!NdrStubCall3+0xc9
31 0000009e`393feb90 00007ff9`76c99bab combase!CStdStubBuffer_Invoke+0×73
32 0000009e`393febd0 00007ff9`76fbd0e3 rpcrt4!CStdStubBuffer_Invoke+0×3b
33 (Inline Function) ——–`——– combase!InvokeStubWithExceptionPolicyAndTracing::__l6:: <lambda_c9f3956a20c9da92a64affc24fdd69ec>::operator()+0×18
34 0000009e`393fec00 00007ff9`76fbced3 combase!ObjectMethodExceptionHandlingAction< <lambda_c9f3956a20c9da92a64affc24fdd69ec> >+0×43
35 (Inline Function) ——–`——– combase!InvokeStubWithExceptionPolicyAndTracing+0xa8
36 0000009e`393fec60 00007ff9`76fd9556 combase!DefaultStubInvoke+0×1c3
37 (Inline Function) ——–`——– combase!SyncStubCall::Invoke+0×22
38 0000009e`393fedb0 00007ff9`76fba4fa combase!SyncServerCall::StubInvoke+0×26
39 (Inline Function) ——–`——– combase!StubInvoke+0×259
3a 0000009e`393fedf0 00007ff9`76fda81b combase!ServerCall::ContextInvoke+0×42a
3b (Inline Function) ——–`——– combase!CServerChannel::ContextInvoke+0xc0
3c (Inline Function) ——–`——– combase!DefaultInvokeInApartment+0xc0
3d 0000009e`393ff1f0 00007ff9`76f701ac combase!ASTAInvokeInApartment+0×15b
3e 0000009e`393ff400 00007ff9`76f70a11 combase!AppInvoke+0×1ec
3f 0000009e`393ff490 00007ff9`76f918c2 combase!ComInvokeWithLockAndIPID+0×681
40 (Inline Function) ——–`——– combase!ComInvoke+0×1c1
41 0000009e`393ff7c0 00007ff9`76f90a99 combase!ThreadDispatch+0×272
42 0000009e`393ff890 00007ff9`76f947ba combase!ModernSTAState::HandleMessage+0×51
43 0000009e`393ff8e0 00007ff9`4eac92f5 combase!ModernSTAWaitContext::HandlePriorityEventsFromMessagePump+0×66
44 0000009e`393ff910 00007ff9`4eac8fee Windows_UI!Windows::UI::Core::CDispatcher::ProcessMessage+0×1b5
45 0000009e`393ff9c0 00007ff9`4eac8f21 Windows_UI!Windows::UI::Core::CDispatcher::WaitAndProcessMessagesInternal+0xae
46 0000009e`393ffad0 00007ff9`72cea89f Windows_UI!Windows::UI::Core::CDispatcher::WaitAndProcessMessages+0×31
47 0000009e`393ffb00 00007ff9`76eac235 twinapi_appcore!<lambda_643db08282a766b00cec20194396f531>::operator()+0xff
48 0000009e`393ffbf0 00007ff9`77aa7c24 SHCore!_WrapperThreadProc+0xf5
49 0000009e`393ffcd0 00007ff9`77fed4d1 kernel32!BaseThreadInitThunk+0×14
4a 0000009e`393ffd00 00000000`00000000 ntdll!RtlUserThreadStart+0×21

We dump doubly dereferenced raw stack region around such exception processing calls:

0:008> dpp 0000009e`393fc160 0000009e`393fcb70
[…]
0000009e`393fcb38 00007ff8`f8057628 cc003f4c`6115ffcc
0000009e`393fcb40 0000009e`393fcb88 0000009e`393fcb98
0000009e`393fcb48 000001e8`69af9450 00007ff9`491c6170 vccorlib140_app!Platform::COMException::`vftable’
0000009e`393fcb50 000001e8`69af9450 00007ff9`491c6170 vccorlib140_app!Platform::COMException::`vftable’
[…]

We see C++ Object references and apply object structure to them:

0:008> dt vccorlib140_app!Platform::COMException 000001e8`69af9450
+0×000 __VFN_table : 0×00007ff9`491c6170
+0×008 __VFN_table : 0×00007ff9`491c5bf8
+0×010 __VFN_table : 0×00007ff9`491c5e20
+0×018 __VFN_table : 0×00007ff9`491c5ec0
+0×020 __description    : 0×000001e8`5e1e30a8 Void
+0×028 __restrictedErrorString : 0×000001e8`5ba83728 Void

+0×030 __restrictedErrorReference : (null)
+0×038 __capabilitySid  : (null)
+0×040 __hresult        : 0n-2147024894
+0×048 __restrictedInfo : 0×000001e8`699f4308 Void
+0×050 __throwInfo      : 0×00007ff9`491baf60 Void
+0×058 __size           : 0×40
+0×060 __prepare        : Platform::IntPtr
+0×068 __abi_reference_count : __abi_FTMWeakRefData
+0×078 __abi_disposed   : 0
+0×080 __abi_disposed   : 0

0:008> du 0x000001e8`5e1e30a8
000001e8`5e1e30a8  "The system cannot find the file "
000001e8`5e1e30e8  "specified..."

0:008> du 0x000001e8`5ba83728
000001e8`5ba83728  "Error trying to initialize appli"
000001e8`5ba83768  "cation data storage folder"

0:008> !error 0n-2147024894
Error code: (HRESULT) 0x80070002 (2147942402) - The system cannot find the file specified.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Crash Dump Analysis Patterns (Part 273)

January 25th, 2021

C++ Objects may leave virtual function table pointer traces in Execution Residue and, therefore, their adjacent data can be inspected:

0:000> !teb
TEB at 0000000000306000
ExceptionList: 0000000000000000
StackBase: 0000000000150000
StackLimit: 000000000014d000

SubSystemTib: 0000000000000000
FiberData: 0000000000001e00
ArbitraryUserPointer: 0000000000000000
Self: 0000000000306000
EnvironmentPointer: 0000000000000000
ClientId: 0000000000000214 . 00000000000011b0
RpcHandle: 0000000000000000
Tls Storage: 0000000000306058
PEB Address: 0000000000305000
LastErrorValue: 0
LastStatusValue: c0000034
Count Owned Locks: 0
HardErrorMode: 0

0:000> dps 000000000014d000 0000000000150000
00000000`0014d000 00000000`00000000
00000000`0014d008 00000000`00000000
00000000`0014d010 00000000`00000000
00000000`0014d018 00000000`00000000
00000000`0014d020 00000000`00000000
[…]
00000000`0014fe08 00000000`00000000
00000000`0014fe10 00000000`005d4550
00000000`0014fe18 00000000`00000000
00000000`0014fe20 00000000`005cd7e0
00000000`0014fe28 00000000`005cd7e0
00000000`0014fe30 00000000`005cd7e0
00000000`0014fe38 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`0014fe40 624f206f`6c6c6548
00000000`0014fe48 00000021`7463656a

00000000`0014fe50 00000000`00000000
00000000`0014fe58 00000000`00000000
00000000`0014fe60 00000000`00000000
00000000`0014fe68 00000000`00000000
00000000`0014fe70 00000000`00000000
00000000`0014fe78 00000000`00000000
00000000`0014fe80 00000000`00000000
00000000`0014fe88 00000000`00000000
00000000`0014fe90 00000000`00000000
00000000`0014fe98 00000000`00000000
00000000`0014fea0 00000000`00000000
00000000`0014fea8 00000000`00000000
00000000`0014feb0 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`0014feb8 624f206f`6c6c6548
00000000`0014fec0 00000021`7463656a

00000000`0014fec8 00000000`00000000
00000000`0014fed0 00000000`00000000
00000000`0014fed8 0000e111`9d4d4b61
[…]

0:000> dps 00000001`40017778
00000001`40017778 00000001`40001040 ExecutionResidueC__Objects!CObject::`scalar deleting destructor’
00000001`40017780 00000001`40001020 ExecutionResidueC__Objects!CObject::foo
00000001`40017788 00000001`40001030 ExecutionResidueC__Objects!CObject::bar
00000001`40017790 600e149f`00000000
00000001`40017798 00000002`00000000
00000001`400177a0 00017c6c`00000069
00000001`400177a8 00000000`00016e6c
00000001`400177b0 00000000`600e149f
00000001`400177b8 00000014`0000000c
00000001`400177c0 00016ed8`00017cd8
00000001`400177c8 600e149f`00000000
00000001`400177d0 0000000d`00000000
00000001`400177d8 00017cec`000002f0
00000001`400177e0 00000000`00016eec
00000001`400177e8 00000000`600e149f
00000001`400177f0 00000000`0000000e

0:000> da 00000000`0014feb8
00000000`0014feb8 “Hello Object!”

0:000> dt ExecutionResidueC__Objects!CObject 00000000`0014feb0
+0×000 __VFN_table : 0×00000001`40017778
+0×008 data : [32] “Hello Object!”

We see that two objects were allocated on the stack. However, finding dynamically allocated objects may require another level of pointer redirection when pointers to such objects are stored on the stack, for example with dpp WinDbg command:

0:000> dpp 000000000014d000 0000000000150000
00000000`0014d000 00000000`00000000
00000000`0014d008 00000000`00000000
00000000`0014d010 00000000`00000000
00000000`0014d018 00000000`00000000
00000000`0014d020 00000000`00000000
[…]
00000000`0014fe08 00000000`00000000
00000000`0014fe10 00000000`005d4550 00000000`005d4560
00000000`0014fe18 00000000`00000000
00000000`0014fe20 00000000`005cd7e0 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`0014fe28 00000000`005cd7e0 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`0014fe30 00000000`005cd7e0 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`0014fe38 00000001`40017778 00000001`40001040 ExecutionResidueC__Objects!CObject::`scalar deleting destructor’
00000000`0014fe40 624f206f`6c6c6548
00000000`0014fe48 00000021`7463656a

00000000`0014fe50 00000000`00000000
00000000`0014fe58 00000000`00000000
00000000`0014fe60 00000000`00000000
00000000`0014fe68 00000000`00000000
00000000`0014fe70 00000000`00000000
00000000`0014fe78 00000000`00000000
00000000`0014fe80 00000000`00000000
00000000`0014fe88 00000000`00000000
00000000`0014fe90 00000000`00000000
00000000`0014fe98 00000000`00000000
00000000`0014fea0 00000000`00000000
00000000`0014fea8 00000000`00000000
00000000`0014feb0 00000001`40017778 00000001`40001040 ExecutionResidueC__Objects!CObject::`scalar deleting destructor’
00000000`0014feb8 624f206f`6c6c6548
00000000`0014fec0 00000021`7463656a

00000000`0014fec8 00000000`00000000
00000000`0014fed0 00000000`00000000
00000000`0014fed8 0000e111`9d4d4b61
[…]

0:000> !address 00000000`005cd7e0

Usage: Heap
Base Address: 00000000`005c0000
End Address: 00000000`005d8000
Region Size: 00000000`00018000 ( 96.000 kB)
State: 00001000 MEM_COMMIT
Protect: 00000004 PAGE_READWRITE
Type: 00020000 MEM_PRIVATE
Allocation Base: 00000000`005c0000
Allocation Protect: 00000004 PAGE_READWRITE
More info: heap owning the address: !heap 0×5c0000
More info: heap segment
More info: heap entry containing the address: !heap -x 0×5cd7e0

0:000> dps 00000000`005cd7e0
00000000`005cd7e0 00000001`40017778 ExecutionResidueC__Objects!CObject::`vftable’
00000000`005cd7e8 624f206f`6c6c6548
00000000`005cd7f0 00000021`7463656a

00000000`005cd7f8 00000000`00000000
00000000`005cd800 00000000`00000000
00000000`005cd808 93002500`6c5ec8a3
00000000`005cd810 4f535345`434f5250
00000000`005cd818 54494843`52415f52
00000000`005cd820 413d4552`55544345
00000000`005cd828 00000000`3436444d
00000000`005cd830 00000000`00000000
00000000`005cd838 92002600`6c5bc8a0
00000000`005cd840 576d6172`676f7250
00000000`005cd848 5c3a433d`32333436
00000000`005cd850 206d6172`676f7250
00000000`005cd858 00000073`656c6946

0:000> da 00000000`005cd7e8
00000000`005cd7e8 “Hello Object!”

0:000> dps 00000001`40017778
00000001`40017778 00000001`40001040 ExecutionResidueC__Objects!CObject::`scalar deleting destructor’
00000001`40017780 00000001`40001020 ExecutionResidueC__Objects!CObject::foo
00000001`40017788 00000001`40001030 ExecutionResidueC__Objects!CObject::bar
00000001`40017790 600e149f`00000000
00000001`40017798 00000002`00000000
00000001`400177a0 00017c6c`00000069
00000001`400177a8 00000000`00016e6c
00000001`400177b0 00000000`600e149f
00000001`400177b8 00000014`0000000c
00000001`400177c0 00016ed8`00017cd8
00000001`400177c8 600e149f`00000000
00000001`400177d0 0000000d`00000000
00000001`400177d8 00017cec`000002f0
00000001`400177e0 00000000`00016eec
00000001`400177e8 00000000`600e149f
00000001`400177f0 00000000`0000000e

0:000> dt ExecutionResidueC__Objects!CObject 00000000`005cd7e0
+0×000 __VFN_table : 0×00000001`40017778
+0×008 data : [32] “Hello Object!”

We created a modeling C++ program for better illustration:

struct CObject
{
    virtual ~CObject() {};
    virtual int foo() { return 1; };
    virtual int bar() { return 2; };

    char data[32] = "Hello Object!";
};

int main()
{
    CObject  localObj;
    int      _[20]{};	// padding the stack
    CObject* dynamicObj{new CObject};

    throw CObject();
}

The example memory dump, PDB file, and source code can be downloaded from here.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 203)

January 10th, 2021

Various metrics are covered by Counter Value trace and log analysis pattern. However, metric labels or metric metadata as implemented by monitoring tools such as Prometheus can be mapped directly to Adjoint Threads of Activity in our trace and log analysis pattern catalog:

<Metric Name>{<Label Name>=<Label Value>, ...}=<Metric Value> (from Prometheus data model)

{<Metric Name ATID>=<ATID Value>, <ATID Name>=<ATID Value>, ..., <Message (Metric Value)>}

This allows the application of many trace and log analysis patterns related to threading and adjoint threading (multibraiding).

We call this analysis pattern Message Metadata. It is illustrated for time series in the following diagram where we have the same Labels for all metric names (in general labels may be different):

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Theoretical Software Diagnostics

November 9th, 2020

Theoretical content is available in edited and revised PDF format:

http://www.patterndiagnostics.com/theoretical-software-diagnostics-book

Trace, Log, Text, Narrative

November 9th, 2020

The content of trace analysis patterns is available in edited and revised PDF format:

https://www.patterndiagnostics.com/trace-log-analysis-pattern-reference

Encyclopedia of Crash Dump Analysis Patterns

November 9th, 2020

The content of crash dump analysis patterns is available in edited and revised PDF format:

https://www.patterndiagnostics.com/encyclopedia-crash-dump-analysis-patterns

Memory Dump Analysis Anthology

November 9th, 2020

The content of this site is available in edited and revised PDF format with a significant discount for volume set:

https://www.patterndiagnostics.com/mdaa-volumes

Alternatively, analysis pattern and theoretical content is included in Pattern-Oriented Software Diagnostics and Anomaly Detection Reference Set:

https://www.patterndiagnostics.com/pattern-oriented-software-diagnostics-reference-set

Software Narratology (Literary Theory Terms, Part 2): abstract, accent, act, action, adaptation, address

November 8th, 2020

Abstract is usually the summary of an artifact (see Trace Summary analysis pattern) or not concrete description (see Analysis Pattern Square diagram).

Accent as stress in a line of verse has its correspondence to data in Message Pattern, which can be seen as a sequence of variables and Message Invariants.

Act as a play division corresponds to Activity Regions (see also trace partitioning and Activity Theatre analysis patterns).

Action as the main story of a narrative artifact may involve a sequence of selected Significant Events, Macrofunctions, Activity Regions with Motives. In a software narratological framework for presenting software storiesaction is a sequence of selected messages that constitutes a software plot (an acquired software artifact that may not be complete/full due to abridgment like restricting tracing/logging to selected components).

Adaptation as interpreting an artifact as a different one (from one media to another, or a different structure) is similar to treating memory dumps as traces/logs or vice versa as Projective Debugging.

Address as a story written for a specific group of people could be a software execution artifact explicitly acquired and adapted to some external users or Declarative Trace messages crafted for a specific team in mind (see also Embedded Comment analysis pattern).

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Software Narratology (Literary Theory Terms, Part 1): ab ovo, in medias res, flashback, abridged edition

November 5th, 2020

Ab ovo is a software story (for example, a trace or log, a problem description, see software narratology square) that starts from the beginning of the use case events it narrates (see also Use Case Trail analysis patterns) or the start of software execution (see also Visibility Limit analysis pattern). Logging may start from some middle event of a use case, source code (see also Declarative Trace analysis pattern), or a log may be a part of a larger full trace (see also a software narratological framework for presenting software stories): in medias res. Such software stories may also have flashbacks, for example, stack traces, especially in software problem descriptions. Often, flashbacks are the only available software stories. Some tracing and logging sessions may be deliberately shortened to save space, communication throughput, or other reasons like security, similar to abridged editions of literary works (see also Abridged Dump and Missing Component analysis patterns). Such editions of software execution artifacts often hinder analysis (see Lateral Damage analysis pattern).

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 202)

October 25th, 2020

Ideally a trace or log message should contain only one piece of information including associated data. However, some Multidimensional Messages may contain unrelated information, including several Message Invariants and variable data places, for example: “Entry GetData. Error opening file: 0×5″ or “Window handle: 0xa60834 pHandler: 0×456210F0″. Such messages may be split into several independent messages and, if necessary, additional ATIDs (new Adjoint Threads of Activity) may be added like depicted in this diagram of Combed Trace:

Another example is Exception Stack Trace messages in some logging implementations.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 201)

September 19th, 2020

If messages from (Adjoint) Thread of Activity also have associated traces (Fiber Bundle) then the latter messages data, for example, module names, can be interlinked with corresponding Adjoint Threads of Activity, thus forming “two-dimensional” Weave of Activity.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Crash Dump Analysis Patterns (Part 272)

September 18th, 2020

We introduced Procedure Call Chain in Stack Trace Collection and Coupled Processes analysis patterns. It is a stack trace formed by gluing stack trace fragments (for example, from LPC/ALPC and RPC Wait Chains) after removing middleware subtraces. For example, we use the following case study (32-bit for less space), follow its Wait Chain, and construct Procedure Call Chain (we use different colors to show gluing):

b88dccb8 804e1bf2 nt!KiSwapContext+0×2f
b88dccc4 804e1c3e nt!KiSwapThread+0×8a
b88dccec 8056dff6 nt!KeWaitForSingleObject+0×1c2
b88dcd50 804dd99f nt!NtWaitForSingleObject+0×9a
b88dcd50 7c90e514 nt!KiFastCallEntry+0xfc (TrapFrame @ b88dcd64)
036ef714 7c90df5a ntdll!KiFastSystemCallRet
036ef718 7c91b24b ntdll!ZwWaitForSingleObject+0xc
036ef7a0 7c901046 ntdll!RtlpWaitForCriticalSection+0×132
036ef7a8 6648a33b ntdll!RtlEnterCriticalSection+0×46
036ef7b0 6648c2ed ipnathlp!FwLock+0xa
036ef808 6648c705 ipnathlp!FwDynPortAdd+0×1d
036ef8c4 77e799f4 ipnathlp!FwOpenDynamicFwPort+0×125
00a9ef9c 662dafa9 hnetcfg!FwOpenDynamicFwPort+0×1b
00a9f048 71a55025 hnetcfg!IcfOpenDynamicFwPort+0×6a
00a9f0e4 71a590f2 mswsock!WSPBind+0×332
00a9f200 71ab2fd7 mswsock!WSPSendTo+0×230
00a9f250 76f252c0 WS2_32!sendto+0×88
00a9f280 76f251ea DNSAPI!SendMessagePrivate+0×18d
00a9f2a0 76f2517c DNSAPI!SendUsingServerInfo+0×33
00a9f2c8 76f25436 DNSAPI!SendUdpToNextDnsServers+0×80
00a9f314 76f24dec DNSAPI!Dns_SendAndRecvUdp+0×121
00a9f34c 76f24d20 DNSAPI!Dns_SendAndRecv+0×7b
00a9f37c 76f24a7d DNSAPI!Query_SingleName+0×8b
00a9f3b0 7677373a DNSAPI!Query_Main+0×11a
00a9f3c8 7677303f dnsrslvr!ResolverQuery+0×48
00a9f8bc 77e799f4 dnsrslvr!R_ResolverQuery+0×111
00a8f4c4 76f2357b DNSAPI!R_ResolverQuery+0×1b
00a8f520 71a526c6 DNSAPI!DnsQuery_W+0×14f
00a8f554 71a5266f mswsock!HostentBlob_Query+0×29
00a8f580 71a51b0a mswsock!Rnr_DoDnsLookup+0×7d
00a8f9c8 71ab32b0 mswsock!NSPLookupServiceNext+0×533
00a8f9e0 71ab3290 WS2_32!NSPROVIDER::NSPLookupServiceNext+0×17
00a8f9fc 71ab325a WS2_32!NSPROVIDERSTATE::LookupServiceNext+0×1c
00a8fa28 71ab31f8 WS2_32!NSQUERY::LookupServiceNext+0xae
00a8fa48 76f775eb WS2_32!WSALookupServiceNextW+0×78
00a8faec 76f6a9d2 WLDAP32!GetHostByNameW+0xef
00a8fb38 76f6667b WLDAP32!OpenLdapServer+0×435
00a8fb58 76f6fb05 WLDAP32!LdapConnect+0×169
00a8fef8 76f704f3 WLDAP32!LdapBind+0×34
00a8ff20 5e95651a WLDAP32!ldap_bind_sW+0×2c
00a8ff68 5e95a887 PAUTOENR!AERobustLdapBind+0xc9
00a8ffb4 7c80b729 PAUTOENR!AEMainThreadProc+0xef
00a8ffec 00000000 kernel32!BaseThreadStart+0×37

This similar to Glued Stack Trace which is produced from fragments that belong to one stack region.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 200)

September 13th, 2020

Trace and log analysis patterns may be additionally applied not only to a database like tables but also to texts (as an example of general trace and log analysis). Sentences may form trace messages with paragraphs and chapters corresponding to traditional ATIDs (IDs for Adjoint Threads of Activity) such as TID and PID in the most simple syntax mapping case, and certain sentences may be interpreted as Silent Messages.

Different attribute generation schemas may be used, for example, selected vocabulary may be used to assign TID numbers. More complex cases may require paratexts, supplementary texts providing additional structure and semantic information like in the case of Paratext memory analysis pattern, the case of extended traces.

The opposite process of converting traces and logs to text is also possible with additional paratext generation if necessary. We call this two-way analysis pattern Text Trace. After converting texts to logs it is possible to apply the majority of trace and log analysis patterns from the catalog.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 199)

September 13th, 2020

Several Strands of Activity from different types of ATIDs (Adjoint Threads of Activity) combine into Cord of Activity:

Between cord and rope analogies we chose cord as having “ord” (ordinal) in it (and c as cardinal). It is also possible to combine several Cords of Activity from different traces (Trace Dimension) to form a “cable-laid rope”. We don’t introduce a separate pattern here since in the resulting Trace Mask we have new Cord of Activity due to the additionally created ATID type referencing former separate traces and logs. Data references in messages may provide additional braiding via Braids of Activity.

We started with strands (we got the idea from the discussion of ethnomathematics where strand analysis was mentioned) but then we found the following useful discussion on rope terminology: “Art and Science of Rope“.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 198)

September 12th, 2020

Strand of Activity combines different Threads of Activity or Adjoint Threads of Activity of the same type.

Strands extend cable and rope composition metaphors that start with Fibers of Activity, and continue with threads and Braids of Activity.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Frame Patterns

August 29th, 2020

A page to reference all different kinds of stack trace frames is necessary, so I created this post:

I’ll update it as soon as I add more similar patterns.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Crash Dump Analysis Patterns (Part 271)

August 29th, 2020

Often a debugger is not able to reconstruct a stack trace correctly, for example, when symbols to guide the process are not available due to Reduced Symbol Information or complete absence due to Unloaded Module:

0:008> k
# ChildEBP RetAddr
00 0250f4b8 76d21775 ntdll!NtWaitForMultipleObjects+0x15
01 0250f554 75c419fc KERNELBASE!WaitForMultipleObjectsEx+0x100
02 0250f59c 75c4268c kernel32!WaitForMultipleObjectsExImplementation+0xe0
03 0250f5b8 75c681fc kernel32!WaitForMultipleObjects+0x18
04 0250f624 75c680bb kernel32!WerpReportFaultInternal+0x186
05 0250f638 75c679b0 kernel32!WerpReportFault+0x70
06 0250f648 75c6792f kernel32!BasepReportFault+0x20
07 0250f6d4 00e21e86 kernel32!UnhandledExceptionFilter+0x1af
08 0250f6f0 75c803cf ModuleA!UnhandledExceptionFilter+0x3d
09 0250f778 77e250d7 kernel32!UnhandledExceptionFilter+0x127
0a 0250f780 77e24fb4 ntdll!__RtlUserThreadStart+0x62
0b 0250f794 77e24e59 ntdll!_EH4_CallFilterFunc+0x12
0c 0250f7bc 77e134a1 ntdll!_except_handler4+0x8e
0d 0250f7e0 77e13473 ntdll!ExecuteHandler2+0x26
0e 0250f804 77e13414 ntdll!ExecuteHandler+0x24
0f 0250f890 77dc0133 ntdll!RtlDispatchException+0x127
10 0250f890 68a8e0ca ntdll!KiUserExceptionDispatcher+0xf
WARNING: Frame IP not in any known module. Following frames may be wrong.
11 0250fd58 02c45f58 <Unloaded_ModuleB.dll>+0x1e0ca
12 0250fd84 75c4343d 0×2c45f58
13 0250fd90 77de9812 kernel32!BaseThreadInitThunk+0xe
14 0250fdd0 77de97e5 ntdll!__RtlUserThreadStart+0×70
15 0250fde8 00000000 ntdll!_RtlUserThreadStart+0×1b

The address may be the valid return address from Execution Residue, but may also be completely random, non-executable:

0:008> ub 0×2c45f58
^ Unable to find valid previous instruction for ‘ub 0×2c45f58′

0:008> !address 0×2c45f58

Usage: Free
Base Address: 02bb0000
End Address: 02cb0000
Region Size: 00100000 ( 1.000 MB)
State: 00010000 MEM_FREE
Protect: 00000001 PAGE_NOACCESS

Type: <info not present at the target>

In our case, we have symbol files for ModuleB.dll but they don’t help.

0:008> .sympath+ C:\MemoryDumps\Modules\PDBs

If we have normal Manual Dumps we can compare Stack Trace Collections and take the advantage of existing Thread Posets to get the correct stack trace.

Alternatively, we can either use manual stack trace reconstruction techniques or use Injected Symbols:

0:008> lm
[...]
Unloaded modules:
[...]
68a70000 68ac0000 ModuleB.dll
[…]

0:008> .reload /f /i ModuleB.dll=68a70000
*** WARNING: Unable to verify timestamp for ModuleB.dll

0:008> kL
# ChildEBP RetAddr
00 0250f4b8 76d21775 ntdll!NtWaitForMultipleObjects+0x15
01 0250f554 75c419fc KERNELBASE!WaitForMultipleObjectsEx+0x100
02 0250f59c 75c4268c kernel32!WaitForMultipleObjectsExImplementation+0xe0
03 0250f5b8 75c681fc kernel32!WaitForMultipleObjects+0x18
04 0250f624 75c680bb kernel32!WerpReportFaultInternal+0x186
05 0250f638 75c679b0 kernel32!WerpReportFault+0x70
06 0250f648 75c6792f kernel32!BasepReportFault+0x20
07 0250f6d4 00e21e86 kernel32!UnhandledExceptionFilter+0x1af
08 0250f6f0 75c803cf ModuleA!UnhandledExceptionFilter+0x3d
09 0250f778 77e250d7 kernel32!UnhandledExceptionFilter+0x127
0a 0250f780 77e24fb4 ntdll!__RtlUserThreadStart+0x62
0b 0250f794 77e24e59 ntdll!_EH4_CallFilterFunc+0x12
0c 0250f7bc 77e134a1 ntdll!_except_handler4+0x8e
0d 0250f7e0 77e13473 ntdll!ExecuteHandler2+0x26
0e 0250f804 77e13414 ntdll!ExecuteHandler+0x24
0f 0250f890 77dc0133 ntdll!RtlDispatchException+0x127
10 0250f890 68a8e0ca ntdll!KiUserExceptionDispatcher+0xf
11 0250fd64 68a8f284 ModuleB!foo+0x5a
12 0250fd84 75c4343d ModuleB!bar+0xf4
13 0250fd90 77de9812 kernel32!BaseThreadInitThunk+0xe
14 0250fdd0 77de97e5 ntdll!__RtlUserThreadStart+0×70
15 0250fde8 00000000 ntdll!_RtlUserThreadStart+0×1b

We call this analysis pattern False Frame. Although we have Incorrect Stack Trace, just one stack trace frame is wrong. Sometimes, if there is Coincidental Symbolic Information available we get Coincidental Frames.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 197)

August 23rd, 2020

Sometimes we may want to Flag a message or Activity Region, for example, using Message Annotations. In other cases we may have Activity Regions are sorted by their coordinate-wise inclusion. Or we have inclusion of Message Sets. The analysis pattern name is borrowed from flag filtration in mathematics, where we consider subsets of messages and Activity Regions as subspaces. Dia|gram pictures of Flags may even resemble flags of some countries.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 196)

July 31st, 2020

It is possible to foliate traces into separate traces having the same structure and scale (we also show corresponding Trace Fabric for the original trace):

In the diagram above Trace Foliation was done for message type, for example, error and normal messages. The reverse operation of Trace Mask would produce the same original trace.

Correspondingly Trace Fabric can be foliated too giving rise to “orchestra” representation and vice versa via Trace Mask:

Bars can be added with the help of Silent Messages.

The name of this analysis pattern was also inspired by foliations in mathematics.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -

Trace Analysis Patterns (Part 195)

July 31st, 2020

Semantic Field is a set of messages that belong to particular category or subject:

It is different from Trace Field which is a function, not an already prepared codomain of mapping.

Some Semantic Fields may be formed by the analysis of Implementation Discourse, for example using machine learning techniques.

The pattern name was inspired by semantic field in linguistics and came to our attention when reading “German Loanwords in English: An Historical Dictionary” book.

- Dmitry Vostokov @ DumpAnalysis.org + TraceAnalysis.org -