

Pattern-Oriented Diagnostics and Observability of World Models: A
Topological Perspective

Introduction

Models of the world are traditionally evaluated by their ability to predict observable
outcomes. Accuracy, likelihood, loss functions, and benchmark scores dominate both
scientific and engineering practice. Yet such criteria say little about how a model
organizes reality, how stable its explanations are under perturbation, or how it changes
as systems evolve. In long-lived software systems, diagnostic pipelines, simulators, and
modern AI models, these questions become central. What is required is a framework for
comparing models not merely by performance, but by structure. We propose a
framework that treats model comparison as a topological diagnostic problem, building
on the previous ideas and earlier work on software defects1, causal models2,
geometrical debugging3, models of software behavior4, higher-order pattern narratives5,

1 What is a Software Defect? Theoretical Software Diagnostics, Fourth Edition, page 33
(https://www.dumpanalysis.org/theoretical-software-diagnostics-book)
2 Causal Models, Ibid., page 52
3 Geometrical Debugging, Ibid., page 60
4 Models of Software Behavior, Ibid., page 108
5 Higher-Order Pattern Narratives (Analyzing Diagnostic Analysis), Ibid., page 202

https://www.dumpanalysis.org/theoretical-software-diagnostics-book

topological software trace and log analysis6, traces and logs as models of
computation7, and pattern-oriented observability8.

World Models as Topological Mappings

At the foundation of this approach lies a simple abstraction. Any model of the world
may be understood as a mapping 𝑓𝑖: 𝑊 → 𝑀𝑖, where 𝑊 denotes a space of world states,
observations, executions, traces, or narratives, and 𝑀𝑖 denotes the internal
representational space of the model, including latent variables, symbolic explanations,
diagnoses, predictions, or narratives produced by the model. The crucial assumption is
that both 𝑊 and 𝑀𝑖 are not mere sets, but spaces equipped with topology, that is, with a
notion of neighborhood and nearness. This assumption is deliberately weak. It does not
require metrics, probabilities, or differentiability, yet it is strong enough to speak
meaningfully about continuity, deformation, invariants, and discontinuities.

Software as a World

In this framework, software systems themselves may be treated as worlds rather than
merely as artifacts within a world. A running software system defines its own space of
states, executions, interactions, and narratives, shaped by control flow, data flow,
concurrency, configuration, and environmental inputs. From the perspective of
diagnostics and observability, this space is not secondary or derivative; it is the primary
reality with which engineers interact. Crashes, performance anomalies, security
violations, and semantic failures occur within this software world, even when they have
no immediate counterpart in the physical environment. Treating software as a world
enables the direct application of topological reasoning to execution behavior, traces,
and models, without requiring an appeal to external “ground truth.” The world 𝑊 is thus
not restricted to physical systems or user-visible outcomes, but includes the internally
generated realities of computation itself. This perspective underlies treating traces,
logs, and models as world models: they are successive representations of a world that
is already artificial, structured, and designed.

Traces as First-Class World Models

Execution traces and logs are often treated as neutral records of system behavior,
positioned between the world and higher-level analytical models. In practice, however,
traces and logs already function as world models in their own right. They are selective,
structured, and interpretive representations of execution, shaped by instrumentation

6 Topological Software Trace and Log Analysis, Ibid., page 257
7 Trace Bias, Memory Dump Analysis Anthology, Volume 16, page 55
(https://www.dumpanalysis.org/Memory+Dump+Analysis+Anthology+Volume+16), and Trace Parameters
and Hyperparameters, Ibid., Volume 17, page 34
(https://www.dumpanalysis.org/Memory+Dump+Analysis+Anthology+Volume+17)
8 Pattern-Oriented Observability, Ibid., page 65

https://www.dumpanalysis.org/Memory+Dump+Analysis+Anthology+Volume+16
https://www.dumpanalysis.org/Memory+Dump+Analysis+Anthology+Volume+17

choices, logging schemas, sampling strategies, and storage constraints. As such, they
impose structure on reality before any further analysis takes place.

Formally, tracing introduces a mapping 𝑓trace: 𝑊 → 𝑇, from the space of executions 𝑊 to
a trace or log space 𝑇. This mapping is neither complete nor transparent. It encodes
decisions about which events matter, how time is represented, how causality is
inferred, and which invariants are preserved or discarded. Consequently, traces do not
merely expose the world; they actively model it.

Recognizing traces as first-class world models has important diagnostic
consequences. Continuity, homotopy, invariants, and discontinuities apply at the trace
level just as they do at the level of analytical models. Discontinuities may arise not from
changes in execution, but from changes in instrumentation, log formatting, sampling, or
correlation mechanisms. Similarly, two tracing systems may produce structurally
different traces that are nevertheless homotopic, preserving diagnostic meaning
despite representational variation.

This perspective also clarifies the composition of diagnostic models. Analytical world
models operate not directly on execution, but on trace-based representations. The
effective mapping from the world to a model is therefore a composition of mappings,

𝑊 →
𝑓trace

𝑇 →
𝑓model

𝑀, and failures of observability may originate at any stage in this chain.
Treating traces as first-class world models allows diagnostic reasoning to localize such
failures precisely, distinguishing system faults from tracing artefacts and modeling
defects.

By elevating traces and logs to the status of world models, observability itself becomes
a modeling problem rather than a purely instrumental one. The quality of diagnosis
depends not only on the sophistication of analytical models, but on the structural
faithfulness of the trace models on which they are built. In this sense, trace design is
model design, and tracing infrastructure becomes an integral part of the diagnostic and
epistemic foundation of complex systems.

Continuity as a Diagnostic Criterion

Under this abstraction, a model is no longer merely a function producing outputs, but a
structural interpreter of the world. Comparing models, therefore, means comparing
how they preserve or distort the neighborhood structure of 𝑊. Continuity becomes the
first diagnostic criterion. A model is continuous if small perturbations in the world
induce only local changes in the model’s internal representation. When two models are
compared, the model that preserves neighborhoods more faithfully is structurally
superior, even if both achieve comparable accuracy on test data. Continuity violations
manifest operationally as brittle behavior, unstable explanations, excessive sensitivity
to noise, adversarial fragility, or abrupt diagnostic jumps.

Homotopy and Model Equivalence

Continuity alone is insufficient to capture deeper notions of model equivalence. Two
models may differ substantially in implementation, architecture, or parameterization,
yet encode the same understanding of the world. This motivates treating homotopy as
an equivalence relation up to deformation. Two models 𝑓1, 𝑓2: 𝑊 → 𝑀 are homotopic if
there exists a continuous deformation 𝐻: 𝑊 × [0,1] → 𝑀 such that 𝐻(𝑤, 0) = 𝑓1(𝑤) and
𝐻(𝑤, 1) = 𝑓2(𝑤). Homotopy captures the idea that one model can be transformed into
another without tearing, collapsing, or introducing new discontinuities. When such a
homotopy exists, the models differ representationally but not conceptually. When no
such homotopy exists, the difference is not cosmetic: the models carve the world
differently. This notion generalizes the Trace Homotopy9 analysis pattern from execution
traces to world models, preserving endpoints and invariants while allowing internal
variation.

Invariants and Semantic Anchors

A further dimension of comparison arises from invariants. Certain structures are
expected to remain unchanged under valid modelling transformations. These may
include causal ordering, temporal directionality, conservation-like quantities, semantic
identities, protocol structure, or the persistence of specific message components
across executions. In Pattern-Oriented Diagnostics, this idea is formalized in the
Message Invariant10 trace and log analysis pattern. Empirically, trace messages emitted
from the same source code fragment typically contain invariant parts, such as function
names and symbolic descriptions, alongside mutable parts, such as pointer values,
object identifiers, version numbers, or error codes. By separating invariant structure
from variable content, diagnosticians can isolate semantically meaningful differences
while suppressing incidental variation.

When lifted to the level of world models, invariants act as semantic anchors. A model
may preserve topological continuity while violating message invariants, thereby
maintaining neighborhood structure but destroying meaning. Conversely, a model that
rigidly enforces invariants while distorting continuity risks suppressing legitimate
variation. Invariant preservation, therefore, defines what must remain fixed for two
representations to be models of the same world.

Discontinuities as Diagnostic Signals

9 Trace, Log, Text, Narrative, Data: An Analysis Pattern Reference for Information Mining, Diagnostics,
Anomaly Detection, Fifth Edition, page 320 (https://www.dumpanalysis.org/trace-log-analysis-pattern-
reference)
10 Ibid., page 198 (Also, Fundamentals of Trace and Log Analysis: A Pattern-Oriented Approach to
Monitoring, Diagnostics, and Debugging, https://link.springer.com/book/10.1007/978-1-4842-9896-1)

https://www.dumpanalysis.org/trace-log-analysis-pattern-reference
https://www.dumpanalysis.org/trace-log-analysis-pattern-reference
https://link.springer.com/book/10.1007/978-1-4842-9896-1

Discontinuities occupy a central place in this diagnostic perspective and are directly
linked to the Discontinuity11 trace and log analysis pattern. In trace and log analysis,
discontinuities appear as abrupt changes in execution flow, unexpected gaps,
reordered sequences, missing segments, or sudden shifts in narrative vocabulary. Such
events often mark fault boundaries, regime changes, configuration transitions, version
mismatches, or failures of observation itself.

The same insight applies at the level of world models. When a model introduces a
discontinuity in the mapping 𝑓: 𝑊 → 𝑀, it implicitly claims that the world itself
undergoes a meaningful transition at that point. The diagnostic question, therefore, is
whether this transition corresponds to a genuine break in execution narratives or is
merely a model-induced tear. Unaligned discontinuities signal structural mismatch
between the model and the world, whereas aligned discontinuities often correspond to
real events.

Structural Translation Between Models

The strongest form of model comparison arises when one asks whether models can be
translated into one another in a structurally faithful way. Suppose there exists a
mapping 𝑇: 𝑀1 → 𝑀2 such that 𝑓2 ≈ 𝑇 ∘ 𝑓1. If this diagram commutes up to isomorphism
and the translation preserves continuity and invariants, then the two models are
structurally equivalent and differ only in representation. If no such translation exists, the
disagreement is fundamental: the models impose incompatible organizations on the
world.

Models as Diagnostic Artefacts

Viewed through the lens of Pattern-Oriented Diagnostics, models themselves become
diagnostic artefacts. They can be inspected, compared, versioned, and classified using
the same structural reasoning traditionally applied to traces, logs, and memory dumps.
Model comparison thus becomes an exercise in identifying continuity violations,
invariant breaks, homotopy obstructions, and unexplained discontinuities, rather than
merely ranking predictive performance.

Engineering World Models for Observability

Observability has traditionally been treated as a property of systems rather than of
models. Logs, traces, metrics, and signals are collected around a system, and
diagnostic reasoning is applied externally to infer what the system is doing and why. In
this view, models are consumers of observability data or predictors built on top of it, but
not themselves objects of observability. As models increasingly mediate understanding,
explanation, and control of complex systems, this separation between models and

11 Ibid., page 115 (Also, Ibid.)

observability becomes untenable. Engineering the models for observability requires a
fundamental inversion: observability must become a property of the model itself.

When a model is engineered for observability, it is no longer sufficient for it to produce
accurate predictions. The model must preserve the diagnostic structure of the world
and make it inspectable. If the model is understood as a mapping 𝑓: 𝑊 → 𝑀, from a
space of world states, executions, or observations to an internal representational
space, then engineering for observability means designing this mapping so that
distinctions, transitions, and invariants in the world remain visible within the model.
Understanding is no longer reconstructed after the fact; the model’s structure carries it.

At the foundation of observable models lies continuity. An observable model is
continuous by default: small changes in the world induce small, traceable changes in
the model’s internal state. This property is essential for diagnosis because, in the
absence of continuity, there is no reliable basis for comparison. Noise becomes
indistinguishable from events, and explanations jump unpredictably across regimes.
Continuity provides a baseline against which deviations can be detected and
interpreted. In this sense, continuity is not a mathematical refinement but a
prerequisite for trustworthy observability.

Continuity alone, however, is insufficient. Real systems undergo genuine transitions,
failures, and regime changes, and an observable model must make such events
explicit. This requires engineering for controlled discontinuity. Rather than allowing
arbitrary or emergent breaks in behavior, an observable model introduces
discontinuities deliberately, at semantically meaningful boundaries. These
discontinuities preserve identifiable pre- and post-states and can be aligned with
discontinuities observed in traces, logs, or execution narratives. When discontinuities
are engineered in this way, they become diagnostic events rather than opaque failures.
When they are not, they manifest as model-induced tears that obscure rather than
reveal system behavior.

Observability also extends across time, versions, and evolution. Models are retrained,
refactored, or replaced, yet diagnostic understanding must persist across these
changes. Engineering the models for observability, therefore, requires homotopy: the
ability to relate different versions of a model through continuous deformation. When
successive models are homotopic, representational changes do not destroy meaning.
Diagnostic baselines remain comparable, explanations evolve smoothly, and
understanding accumulates rather than resets. Without homotopy, every model update
becomes an epistemic rupture, forcing diagnostics to start from scratch.

Another essential aspect of observability is the preservation of invariants. Observable
models must retain stable semantic anchors that survive across executions and
contexts. These include conceptual identifiers, protocol meanings, narrative roles, and

other invariant structures that define what remains the same when everything else
varies. This requirement generalizes message-level invariants from trace and log
analysis to the level of models themselves. A model may preserve continuity yet violate
invariants, producing internally smooth behavior that silently destroys meaning.
Conversely, a model that enforces invariants rigidly while distorting continuity
suppresses legitimate variation. Engineering for observability requires balancing
continuity and invariance so that both structure and meaning remain accessible.

A deeply observable model also supports partial reversibility. While full inversion of the
world model mapping is neither possible nor necessary, an observable model allows
diagnostic backtracking. From an explanation, one can infer a class of world states;
from an anomaly, one can identify a structural cause; from an output, one can locate an
internal regime. This partial reversibility enables diagnostic reasoning to flow not only
forward, from world to model, but also backward, from model behavior to plausible
world structure.

Taken together, these properties define a clear design principle. A model is engineered
for observability if its internal structure preserves the diagnostic patterns present in the
world and makes violations of those patterns explicit, localized, and interpretable. This
principle is stronger than interpretability and orthogonal to accuracy. A model may be
accurate yet unobservable, just as it may be interpretable yet diagnostically opaque.

The consequences of engineering models for observability are substantial. Failures
become explainable rather than mysterious; diagnostics remain stable across versions;
anomalies acquire structural meaning; and long-lived systems accumulate
understanding rather than lose it. Most importantly, the model itself becomes part of
the observability stack rather than merely a consumer of signals. Observability is no
longer something added around a model; it is something the model embodies.

From this perspective, engineering the models for observability is not an optional
refinement but a necessary response to the increasing role models play in shaping how
complex systems are understood, diagnosed, and trusted.

Related Work

The ideas developed here intersect with several established bodies of work, including
topological methods in data analysis, semantic models in software engineering,
research on robustness and interpretability in machine learning, and observability in
complex systems. At the same time, they differ from these traditions in both emphasis
and scope, treating world models themselves as diagnostic artefacts and grounding
their comparison and observability explicitly in Pattern-Oriented Diagnostics.

Topological concepts have long been used in the analysis of physical systems,
dynamical systems, and, more recently, in data analysis through techniques such as

topological data analysis and manifold learning. In these contexts, topology is typically
applied either to the underlying system under study or to the geometry of the observed
data. Continuity, connectedness, and invariants are used to reason about stability,
phase transitions, or qualitative structure. By contrast, we apply topological reasoning
not directly to data or physical state spaces, but to the mapping induced by a model.
The object of analysis is not the world alone, but the relationship between the world and
its representation inside a model, and, crucially, how this relationship affects what can
be observed, interpreted, and diagnosed through the model.

In machine learning, related concerns appear under the headings of robustness,
generalization, adversarial stability, and representation learning. Many approaches
implicitly assume continuity by enforcing smoothness, imposing Lipschitz constraints,
or regularizing latent spaces. Other work studies model sensitivity and brittleness
through perturbation analysis. However, such approaches typically remain metric- or
loss-driven and focus on performance degradation rather than structural interpretation.
Observability, when discussed, is often reduced to logging activations, inspecting
attention maps, or probing internal representations post hoc. The framework presented
here reframes robustness and sensitivity as topological properties of the world–model
mapping, making discontinuities, folds, and violations of invariance first-class
diagnostic and observability signals rather than secondary effects of optimization.

Interpretability and explainability research also overlap conceptually with this work.
Post hoc explanation methods, concept-based explanations, and symbolic
abstractions aim to render model behavior understandable to humans. While valuable,
these techniques often operate locally or retrospectively. The present approach instead
emphasizes structural faithfulness and structural observability: whether a model
preserves neighborhood relations, semantic invariants, and execution narratives
globally and across versions. In this sense, the work aligns more closely with epistemic
notions of model validity and observability than with visualization or explanation alone.

In software engineering and systems diagnostics, traces, logs, metrics, and execution
narratives have long been treated as primary artefacts for observability and diagnostics.
Pattern-Oriented Diagnostics, including patterns such as Discontinuity, Trace
Homotopy, and Message Invariant, provide a vocabulary for reasoning about stability,
change, and failure in observed system behavior. Prior work in this area has focused on
concrete execution artefacts and observability signals emitted by running systems. The
present contribution extends this diagnostic and observability reasoning to models
themselves, treating them as higher-order artefacts that can be inspected, compared,
and classified using the same structural principles. In this view, models are not merely
consumers of observability data but participants in the observability stack.

The notion of homotopy used here is inspired by both classical topology and its
diagnostic analogue in trace analysis. In execution traces, homotopy captures

equivalence between different internal paths that preserve endpoints and invariants,
enabling observability across execution variability. By lifting this idea to world models,
the paper introduces a principled way to distinguish representational change from
conceptual drift, and to maintain observability across model evolution, retraining, and
refactoring. While homotopy has occasionally appeared as a metaphor in machine
learning discourse, we use it systematically as a model comparison and observability
criterion grounded in diagnostic practice.

Finally, the idea of invariant preservation connects this work to formal methods,
protocol verification, and contract-based design, where invariants play a central role.
However, those approaches typically treat invariants as hard constraints or correctness
conditions. In contrast, the diagnostic perspective adopted here treats invariant
violations as observability signals to be interpreted, localized, and explained, rather
than simply as failures. This positions invariant reasoning within observability and
diagnosis rather than within verification alone.

In summary, we synthesize mathematical and conceptual components drawn from
well-established traditions into a Pattern-Oriented Diagnostics framework for world
models that explicitly incorporates observability as a structural property. The unification
of topological reasoning, diagnostic patterns, and engineered observability lies at the
intersection of systems diagnostics, AI model evaluation, and epistemic analysis of
complex systems.

Conclusion

World models should be treated as diagnostic artefacts whose structure, stability, and
evolution can be examined using the same principles applied to execution traces, logs,
and memory dumps. By adopting a topological perspective, models are understood as
mappings between spaces of observations and internal representations, allowing
continuity, homotopy, invariants, and discontinuities to serve as principled criteria for
comparison and diagnosis.

Within this framework, continuity characterizes epistemic robustness, homotopy
distinguishes representational change from conceptual drift, message invariants
anchor semantic commitments, and discontinuities become interpretable signals
rather than mere errors. Established trace and log analysis patterns, such as
Discontinuity, Trace Homotopy, and Message Invariant, generalize naturally to the level
of models, providing a direct bridge between concrete diagnostic practice and abstract
model evaluation. These same properties also define model-level observability,
ensuring that internal model states, transitions, and explanations remain traceable,
comparable, and diagnostically meaningful.

The resulting shift is conceptual as much as technical. Model evaluation moves away
from narrow performance-centric criteria toward questions of structural faithfulness:

where a model preserves neighborhood structure, where it introduces tears, which
invariants it respects, and which changes correspond to real transitions in the world
rather than artefacts of modelling. In an era of long-lived software systems, complex
observability pipelines, and increasingly opaque AI models, such questions are no
longer optional.

From the perspective of Pattern-Oriented Diagnostics, models themselves become
first-class subjects of diagnosis. A good model is one whose topology changes only
when the world itself changes, whose invariants break only when semantic
commitments change, and whose discontinuities correspond to genuine events rather
than modelling artefacts. Topological comparison, therefore, complements traditional
evaluation by restoring structure, meaning, and interpretability to the practice of
modelling complex systems.

Appendix

Case Study: Diagnosing Model Evolution in a Distributed Order
Processing System

This case study illustrates how continuity, homotopy, message invariants, and
discontinuities jointly support diagnostic reasoning across system behavior and model
evolution. The example is drawn from a distributed order-processing system, whose
execution traces are used both for operational diagnosis and for training and validating
a world model that predicts and explains system behavior.

System Context

The system consists of an order service, a pricing component, a payment gateway, and
a persistence layer. Execution traces are collected across multiple deployments and
model versions. A world model 𝑓: 𝑊 → 𝑀 is constructed to map observed executions to
internal representations that capture causal structure, service interactions, and
outcome states. Over time, the system undergoes minor configuration changes, internal
refactoring, and a major incident, providing a natural setting in which all four diagnostic
concepts arise.

Continuity: Stable Behavior Under Small Perturbations

Under normal operation, the system processes orders with slight variations in input
parameters, such as order amount or user identifier. Traces collected during this phase
exhibit stable structure: the same services are invoked in the same order, and the same
outcome is produced. Only numeric parameters and identifiers differ.

From the perspective of the world model, these executions correspond to nearby points
in the world space 𝑊 that are mapped to nearby representations in 𝑀. The mapping is
continuous: small changes in input lead to small, localized changes in representation.

This continuity establishes a baseline of epistemic stability. It allows the diagnostician
to interpret deviations meaningfully, knowing that the model does not amplify noise into
structural change.

Homotopy: Representational Change Without Conceptual Drift

The authentication subsystem is later refactored to improve performance. The
refactoring alters the internal order of validation and profile-loading steps but preserves
all externally observable semantics. Traces before and after the refactoring differ in
internal sequencing but share the same start conditions, invariants, and outcomes.

These trace families are homotopic. There exists a continuous deformation from the
pre-refactoring mapping 𝑓0 to the post-refactoring mapping 𝑓1 such that, for each
execution, intermediate representations preserve identity, authorization outcome, and
security constraints. The world model reflects this by allowing a smooth deformation of
its internal structure while maintaining semantic anchors. Diagnostic understanding is
preserved across versions: the model evolves without conceptual drift.

Message Invariants: Anchoring Semantic Comparison

During routine comparative analysis across users, a discrepancy in object-creation
behavior was detected. Trace messages emitted from the same code location contain
invariant components, such as function names and symbolic descriptors, alongside
variable components, such as object addresses and version numbers. The invariant
message structure enables direct comparison across executions.

By isolating invariant parts, diagnosticians identify that a particular user’s trace
consistently references a different object version than all others. This difference is
semantically meaningful rather than incidental. In the world model, these invariants
correspond to fixed semantic anchors that must be preserved across mappings. The
violation indicates a divergence in interpretation for a specific subset of world states,
prompting further investigation.

Discontinuity: Structural Rupture and Diagnostic Event

A production incident occurs following a configuration update. Traces that previously
exhibited stable cache behavior suddenly show cache eviction followed by a null
reference failure. The transition is abrupt: new execution paths appear without a gradual
lead-up, and previously invariant assumptions are violated.

This event constitutes a discontinuity. In trace space, it appears as a sudden change in
structure. In the world-model mapping, it manifests as a jump that cannot be explained
by continuous deformation. The model implicitly asserts that the world has undergone a
significant transition. The diagnostic analysis confirms that the configuration update
introduced an incompatible cache policy. The discontinuity is aligned with a real-world
event rather than being a modelling artefact.

Integrated Diagnostic Interpretation

Viewed in isolation, each of these phenomena is familiar to engineers. Viewed together,
they form a coherent diagnostic narrative. Continuity establishes a stable interpretive
baseline. Homotopy allows representational change without loss of meaning across
evolution. Message invariants anchor semantic comparison and expose subtle
divergences. Discontinuities signal genuine regime changes requiring explanation.

Crucially, the same concepts apply at both the trace and model levels. The world model
is not merely trained on traces; it is itself subject to diagnosis using the same structural
principles. Its continuity, homotopy, invariance under transformations, and
discontinuities determine whether it remains a faithful, observable representation of
the system.

Implications

This case study demonstrates that the proposed topological framework is operationally
meaningful. It unifies routine trace analysis and higher-level model evaluation within a
single diagnostic vocabulary. By engineering models that preserve continuity, admit
homotopy, respect invariants, and expose discontinuities, diagnostic understanding
can accumulate over the course of system evolution rather than being repeatedly reset.
In this sense, the model becomes a first-class diagnostic artefact and an integral
component of the observability stack.

Case Study: Diagnosing a Faulty World–Model Mapping

This case study examines a scenario in which observed execution behavior remains
stable, yet diagnostic failures arise due to defects in the world-model mapping itself.
Unlike the previous case, in which discontinuities reflected genuine system events, the
present example demonstrates that the model can violate continuity, homotopy, and
invariants even when the underlying system remains well-behaved.

System Context

The same distributed order processing system is operating under stable production
conditions. Execution traces collected over time exhibit consistent structure, ordering,
and outcomes. No configuration changes, refactoring, or incidents occur during the
observation window. A world model 𝑓: 𝑊 → 𝑀 is trained to map execution traces into an
internal representation used for anomaly detection and root-cause analysis.

A new version of the model is introduced after retraining with additional data and a
modified representation layer. Shortly after deployment, the model begins reporting
anomalous regime changes despite the absence of corresponding changes in the
execution traces.

Apparent Discontinuity Without Trace Evidence

The model flags abrupt transitions between internal states corresponding to “normal
operation” and “degraded performance.” These transitions appear as sharp jumps in the
model’s internal space, triggering alerts and diagnostic workflows. However, a review of
the underlying traces reveals no corresponding discontinuities. Message ordering,
component interactions, and outcomes remain consistent with historical baselines.

From a topological perspective, this discrepancy is immediately significant. The
mapping from the world to traces is continuous, whereas the mapping from traces to
the model is not. The latter mapping introduces a discontinuity that is not present in the
world. This indicates a model-induced tear rather than a world event.

Failure of Homotopy Across Model Versions

Further investigation compares the previous model version 𝑓0 with the newly deployed
version 𝑓1. Although both models are trained on overlapping data and intended to
represent the same system semantics, no continuous deformation exists that relates
𝑓0 to 𝑓1 while preserving invariants. Small variations in traces that previously produced
small representational changes now result in qualitatively different internal states.

The absence of a homotopy between 𝑓0 and 𝑓1 indicates conceptual drift introduced by
the model rather than by the system. The models are not merely different
implementations; they impose incompatible organizations on the same world.

Invariant Violation in the Representation

Inspection of the internal representations reveals that certain semantic anchors
previously preserved by the model have been lost. Messages that were formerly
mapped to stable conceptual identifiers are now distributed across multiple internal
categories based on incidental parameters, such as timing or identifier ranges.
Message-level invariants present in the traces are no longer preserved in the model
representation.

This violation is subtle. The traces themselves still contain invariant structure, but the
mapping fails to respect it. As a result, semantically identical executions are interpreted
as distinct, fragmenting the diagnostic narrative. The failure is not one of observability
instrumentation, but of representational fidelity.

Continuity Breakdown as a Mapping Defect

The combined effect of these changes is a breakdown of continuity in the world-model
mapping. Nearby points in the world space, nearly identical executions, are mapped to
distant regions in the model space. The model amplifies insignificant variation into
structural differences. This violates the baseline assumption required for meaningful
diagnosis: that small causes produce small effects in representation.

Importantly, this breakdown occurs without any corresponding trace-level instability.
Continuity holds in the world and in the observability artefacts, but fails in the model.

Diagnostic Resolution

Recognizing the issue as a mapping fault rather than a system fault reframes the
diagnostic task. Instead of searching for hidden incidents or race conditions, attention
shifts to the model’s design and training process. Analysis reveals that a normalization
change in the representation layer introduced a sharp boundary condition, effectively
partitioning the model space in a way that has no counterpart in the world.

The corrective action is therefore model-centric: restoring invariant preservation,
smoothing the representation, and re-establishing continuity and homotopy with the
prior model version. Once these properties are restored, spurious anomalies disappear
without altering the underlying system.

Implications

This case study demonstrates the diagnostic power of treating models themselves as
artefacts subject to topological analysis. By comparing continuity, homotopy, and
invariant preservation across traces and models, it becomes possible to distinguish
genuine world events from representational artefacts. Discontinuities that arise in the
absence of trace-level evidence can be correctly attributed to the mapping rather than
the system.

Case Study: Diagnosing Failure Across a Hierarchy of World Models

This case study examines a production incident in which execution traces and logs
serve as an intermediate world model linking system behavior to higher-level analytical
models. The example demonstrates how continuity, homotopy, message invariants, and
discontinuities must be evaluated not only between the world and a model, but across
a hierarchy of models. The failure ultimately happens neither in the system nor in the
analytical model, but in the trace model itself.

System and Observability Context

Consider a distributed payment processing system comprising an API gateway, an
authorization service, a fraud-detection component, and a payment provider. Execution
traces and logs are collected using a centralized tracing infrastructure that emits
structured logs with correlation identifiers. These traces serve as the primary input to a
diagnostic world model 𝑓model: 𝑇 → 𝑀, where 𝑇 denotes the trace space and 𝑀 an
internal representation used for anomaly detection and causal analysis.

Implicitly, tracing itself defines a prior mapping 𝑓trace: 𝑊 → 𝑇, from actual executions in
the world 𝑊 to observable traces.

Continuity at the Trace Level

Under normal operation, small variations in user behavior, such as transaction amounts
or geographic locations, produce traces with a stable structure. The same services are
invoked, messages appear in consistent order, and outcomes are unchanged. Minor
parameter differences are reflected only in message payloads.

At the trace level, the continuity holds: nearby executions in 𝑊 map to nearby traces in
𝑇. The analytical model 𝑓model further preserves this continuity, mapping these traces to
nearby internal states in 𝑀. Diagnostic baselines remain stable, and no anomalies are
reported.

Homotopy Across Trace Schemas

To reduce log volume, the tracing team deploys a new version of the logging schema.
Some messages are merged, others reordered, and verbosity is reduced. Despite these
changes, semantic anchors, such a transaction identifiers, authorization outcomes,
and service boundaries, are preserved.

Although the resulting traces differ structurally from earlier ones, they are homotopic
with respect to diagnostic meaning. There exists a deformation between the old trace

mapping 𝑓trace
(0) and the new mapping 𝑓trace

(1) that preserves endpoints and invariants.
Experienced diagnosticians can still interpret the traces correctly, and the analytical
model continues to function as expected. Observability across trace evolution is
preserved.

Message Invariants as Trace-Model Commitments

Within the trace model, certain message components function as invariants:
correlation IDs, service names, and outcome labels. These invariants anchor meaning
across executions and across schema versions. The analytical model relies on them to
group events, infer causality, and detect deviations.

At this stage, invariant preservation holds at both levels: the system produces
consistent behavior, and the trace model faithfully preserves its semantic structure.

Discontinuity Introduced by the Trace Model

A subsequent optimization introduces aggressive sampling in the tracing infrastructure.
Under high load, certain internal service calls are no longer logged, and correlation
identifiers are omitted for sampled-out spans. No changes are made to the system
itself.

From the system’s perspective, behavior remains continuous. However, the trace
mapping 𝑓trace now introduces a discontinuity. Traces that were previously structurally

similar suddenly lack key messages and identifiers. From the viewpoint of the analytical
model, executions appear to jump abruptly between unrelated internal states.

The model flags severe anomalies: apparent partial executions, missing authorization
steps, and unexplained failures. Yet inspection of raw system metrics and business
outcomes reveals no corresponding incident. The discontinuity exists only in the trace
space.

Diagnostic Localization Across the Model Hierarchy

Applying the framework proposed in this paper, diagnosticians analyze continuity and

invariants across the composed mapping 𝑊 →
𝑓trace

𝑇 →
𝑓model

𝑀. They observe that
continuity holds in 𝑊, fails in 𝑇, and is amplified in 𝑀. Homotopy between trace
versions is broken: no deformation preserves diagnostic meaning after sampling
removes invariant components. The analytical model is behaving correctly with respect
to its input; the failure lies in the trace model.

Corrective action is therefore taken at the level of observability, not at the level of
system logic or model architecture. Sampling policies are revised to preserve invariant
messages and correlation structure. Once this is done, continuity is restored in 𝑇,
homotopy with prior traces re-emerges, and spurious anomalies disappear from 𝑀.

Integrated Interpretation

This case study demonstrates that traces and logs are not passive artefacts, but active
world models whose structure directly determines what higher-level models can
observe and infer. Continuity, homotopy, invariants, and discontinuities must be
evaluated across all layers of representation. A failure at any layer can manifest as a
diagnostic anomaly, even when the underlying system is stable.

By treating traces as first-class world models, the diagnostic process can correctly
attribute failures to their source. In this case, the problem was neither a system fault nor
a modeling defect, but a breakdown in the trace-world mapping. Recognizing this
distinction prevents misdirected remediation efforts and reinforces the central claim of
this work: effective observability and diagnosis depend on the structural faithfulness of
every model in the representational hierarchy.

These examples complete the diagnostic picture. Failures may originate either in the
world or in the models. The proposed framework provides tools for distinction. In doing
so, it reinforces the central claim: that observability and diagnosis depend as much on
the structure of the mapping as on the behavior of the system being observed.

