Pattern Grammars

Pattern Repertoire Problem Analysis
Patterns | Patterns

4

Pattern-Oriented Diagnostics and Observability as a Philosophy of Engineering:
From Correspondence to Grammar, from Problem Patterns to Analysis Patterns

Introduction

Every mature engineering discipline rests on philosophical assumptions, whether or not
they are made explicit. In software engineering, diagnostics and observability have
traditionally assumed that artefacts produced by a running system directly represent
what the system is doing. Correct diagnosis, on this view, consists in reading those
artefacts accurately, while observability is understood as increasing the quantity and
fidelity of such representations. Together, diagnostics and observability are treated as
epistemic extensions of execution itself.

As systems evolved toward massive concurrency, distribution, adaptive behaviour, and
ubiquitous instrumentation, diagnostic and observability artefacts ceased to form a
single coherent picture. Engineers increasingly encountered situations in which logs
contradicted traces, metrics obscured rather than clarified behaviour, and different
observability pipelines suggested incompatible explanations. In practice, engineers
responded by developing extensive diagnostic pattern repertoires’ that encode
accumulated interpretive knowledge. Philosophically, however, these developments
expose the breakdown of an implicit correspondence theory shared by both diagnostics
and observability.

" Pattern Repertoire, Theoretical Software Diagnostics, Fourth Edition, page 229



Foundations

Pattern-Oriented Diagnostics and Observability rests on a small set of foundational
commitments that shape how execution, artefacts, and interpretation are understood.
These commitments are not methodological preferences, but conceptual necessities
imposed by the nature of modern software systems.

First, execution and observation are fundamentally distinct. Execution unfolds as a
concrete, time-bound process governed by scheduling, resource contention,
concurrency, and environmental interaction. Observability artefacts, such as logs,
traces, memory dumps, metrics, and derived signals, are not neutral windows onto this
process. They are products of instrumentation, sampling, aggregation, and
representation choices. As such, they are already interpretations before any human
analysis begins.

Second, diagnostic meaning is not intrinsic to artefacts. Artefacts do not carry
determinate meanings independent of their use. Their significance arises only within
diagnostic practice, shaped by questions being asked, transformations applied, and
comparisons performed. This rejects the assumption that artefacts “speak for
themselves” and replaces it with the view that meaning is established through
disciplined interpretive activity?.

Third, patterns are primary units of diagnostic reasoning. Rather than reasoning directly
from artefacts to causes, diagnosticians reason through patterns that stabilise
interpretation. Problem patterns capture recurring structures in execution failure, while
analysis patterns define how artefacts are rendered intelligible in the first place®. This
distinction is foundational: without analysis patterns, problem patterns cannot be
reliably recognised.

Fourth, diagnostic reasoning is inherently sequential and contextual. Patterns often
arise in succession*, where earlier patterns enable or block later ones. Understanding
failures, therefore, requires reconstructing ordered diagnostic narratives rather than
identifying isolated symptoms. Causality in diagnostics is temporal and grammatical,
not merely local.

Finally, judgmentis irreducible. No combination of artefacts, patterns, notations, or
tools can eliminate the need for expert judgment. Tooling can support rule-following,
but it cannot replace it. Diagnostics and observability are thus practices grounded in
shared grammar, training, and experience rather than in purely mechanical inference.

2 Philosophy of Software Diagnostics: An Introduction, Part 1
3 Pattern! What Pattern? Theoretical Software Diagnostics, Fourth Edition, 216
4 Pattern Succession, Ibid., page 81



These foundations establish diagnostics and observability as interpretive engineering
disciplines. They motivate the shift from correspondence to grammar and frame
Pattern-Oriented Diagnostics and Observability as a coherent philosophy of engineering
rather than a collection of techniques.

The Tractarian Phase of Diaghostics and Observability

In the Tractatus Logico-Philosophicus®, the philosopher Ludwig Wittgenstein® proposes
that propositions are pictures of facts that share their logical form. Classical
diagnostics and early observability implicitly adopt this picture theory. Execution is
treated as a set of objective facts, and artefacts are taken to be propositional
representations of those facts. A crash dump is read as stating the cause of failure, a
trace as revealing causal order, and a metric as measuring a real quantity in the system.

Within this regime, patterns are understood primarily as descriptions of recurring
execution phenomena. Memory leaks, deadlocks, race conditions, resource
exhaustion, and similar failures are catalogued as problem patterns: recognisable
forms of breakdown in execution behaviour. Observability is assumed to make these
patterns visible by providing increasingly detailed pictures of execution. This view
corresponds to the Tractarian phase of engineering diagnostics and observability, in
which meaning is understood to arise from structural correspondence between the
artefact and its execution.

The Breakdown of Correspondence under Observability

Modern systems systematically violate the assumptions that underpin correspondence.
Instrumentation perturbs the behaviour it observes, introducing bias and distortion.
Sampling, aggregation, and retention policies reshape artefacts before they are ever
inspected. Artefacts produced by different observability pipelines frequently disagree,
with no principled way to determine which representation should be privileged. In
distributed systems, causality is fragmented across time, space, and administrative
boundaries. In systems that incorporate machine learning, internal states such as
embeddings and activations are not propositional and cannot meaningfully be said to
represent execution facts. In other words, ML internal states do not function like
statements about the system or the world in the way logs, traces, or variable values
traditionally do.

In these conditions, recognising a familiar problem pattern is no longer sufficient. The
same apparent symptom may arise from execution behaviour, from measurement
artefacts, or from the grammar imposed by observability itself. Artefacts no longer
determine their own interpretation. This situation mirrors the philosophical crisis that

5 https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus
8 https://en.wikipedia.org/wiki/Ludwig_Wittgenstein



https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus
https://en.wikipedia.org/wiki/Ludwig_Wittgenstein

led Wittgenstein to abandon picture theory: propositions, like observability artefacts,
cannot determine their own use.

The Turn to Practice in Diagnostics and Observability

In Philosophical Investigations’, Wittgenstein replaces correspondence with a theory of
meaning grounded in use. Understanding becomes participation in language games,
rule-following becomes a practice rather than an algorithm, and categories are
constituted by family resemblance rather than strict definition. Meaning is no longer
located in a relation between sign and fact, but in the way signs are employed within
shared forms of life.

Applied to engineering, this implies that diagnostics and observability are not passive
epistemic activities but active interpretive practices. Artefacts acquire meaning only
through their use in diagnostic contexts. The same trace, metric, or memory snapshot
may support different explanations depending on the investigative question, the
analysis performed, and the diagnostic language game being played. In practice, this
use-based understanding is embodied in diagnostic pattern repertoires.

Problem Patterns and Analysis Patterns

Pattern-Oriented Diagnostics and Observability introduces a crucial distinction
between two classes of patterns that are often conflated. Problem patterns
characterise recurring forms of failure or anomalous behaviour in execution. They
describe what kinds of things tend to go wrong in systems and provide a vocabulary for
naming such situations. These patterns are extensively documented in diagnostic
pattern repertoires developed through decades of practice, spanning crash, memory,
trace, log, and metric domains. For example, detailed catalogues of concrete memory
and trace patterns exist that illustrate hundreds of identifiable execution-level
conditions®.

Analysis patterns, by contrast, do not describe failures. They govern how artefacts
produced by diagnostics and observability are interpreted. They specify how memory
dumps are abstracted into structural regions, how traces are segmented into activity
sequences, how logs are correlated or anchored, and how metrics are normalised or
compared. Recognising a problem pattern presupposes that artefacts have already
been rendered intelligible through appropriate analysis patterns.

Crucially, problem patterns rarely occur in isolation. In practice, they often appear in
succession, where one pattern creates the structural or temporal conditions for another
to emerge. Heap corruption may trigger a hard error, blocking execution and producing
thread wait chains that may, in turn, propagate across process boundaries. Diagnosing

7 https://en.wikipedia.org/wiki/Philosophical_lnvestigations
8 DumpAnalysis.org + TraceAnalysis.org



https://en.wikipedia.org/wiki/Philosophical_Investigations

such failures, therefore, requires tracing not just individual patterns, but their ordered
succession across execution time.

Analysis Patterns as Diagnhostic and Observability Grammar

Analysis patterns function as grammar in the Wittgensteinian sense. They do not assert
facts about execution. Instead, they constrain what counts as a meaningful diagnostic
or observability statement. An analysis pattern defines which artefacts are relevant,
which transformations are legitimate, which comparisons are admissible, and which
forms of counter-evidence are decisive.

Because analysis patterns operate grammatically, they admit symbolic and graphical
representations. Symbolic notation® facilitates compact linguistic expressions of
pattern combinations, using capitalised letters for major categories and subscripts for
subcategories. This notation forms an explicit grammar of pattern composition.

Complementing symbolic forms, graphical notation has been developed to convey
pattern structure and interpretation visually. The Dia|gram graphical diagnostic analysis
language’ provides a diagrammatic syntax that represents execution state, artefacts,
and pattern relationships in visual form. It illustrates memory, trace, and log analysis
patterns using a consistent visual grammar that supports comparison, sequencing, and
layered interpretation. Graphical patterns facilitate communication of how patterns are
distributed, related, and composed across artefacts, and serve as a bridge between
conceptual grammar and practical analysis.

Within this combined grammatical framework, the succession of patterns becomes
intelligible both textually and visually. Analysis patterns enable recognition not only of
multiple problem patterns but also of how they relate in time and space, how
observability artefacts reflect transformations in execution structure, and how
diagnostic narratives emerge from artefact interactions.

Rule-Following, Judgment, and Tooling

Wittgenstein’s rule-following considerations show that no rule contains the criteria for
its own correct application. Following a rule is not a mechanical act but a practice
sustained by shared standards, training, and judgment. This insight maps directly onto
diagnostics and observability. Neither analysis patterns nor their symbolic or graphical
notations determine their own use. They guide interpretation, but they do not replace it.

Tools can implement transformations, generate visualisations, or suggest candidate
patterns. Still, they cannot determine when an analysis pattern is appropriate, when it
should be abandoned, or when competing interpretations must be weighed. This
limitation is particularly evident in complex incidents in which multiple pattern

° Notation for Memory and Trace Analysis, Theoretical Software Diagnostics, Fourth Edition, page 107
9 Dia|gram Graphical Diagnostic Analysis Language, Ibid., page 251



successions are possible. Determining which pattern initiated a cascade, which
patterns are consequences rather than causes, and which are artefacts of observation
requires judgment that exceeds syntactic manipulation.

Pattern-Oriented Diagnostics and Observability does not treat this reliance on judgment
as a weakness to be eliminated through automation. Instead, it recognises judgment as
a structural feature of diagnostic practice. Tooling is therefore best understood as
supporting rule-following practice rather than replacing it. Making analysis patterns
explicit clarifies where judgment is exercised and why it cannot be fully mechanised.

Family Resemblance across Patterns and Observability Regimes

Problem patterns and analysis patterns do not form strict taxonomies with necessary
and sufficient conditions. Instead, they exhibit family resemblance. Memory leaks
across different runtimes share commonalities but do not have identical structures.
Deadlocks, livelocks, and wait chains form clusters of related phenomena rather than
sharply bounded categories. Analysis patterns likewise recur across domains with
variation rather than uniformity™".

This family-resemblance structure extends to pattern succession. Certain sequences of
patterns recur frequently and become recognisable diagnostic trajectories, while others
appear only in specific environments or under particular workloads. These successions
cannot be reduced to universal causal laws, yet they are stable enough to guide expert
reasoning. Their stability lies in shared diagnostic roles rather than in invariant
mechanisms.

Understanding patterns through family resemblance explains how diagnostic
knowledge transfers across platforms, languages, and observability stacks. What
transfers is not a fixed mapping from artefact to cause, but a repertoire of analysis
patterns and pattern successions that can be re-applied and adapted. Pattern-Oriented
Diagnostics and Observability, therefore, treats the pattern repertoire as a living
grammar rather than a closed classification system.

Second-Order Diagnostics and Observability

Because observability systems actively shape artefacts, they also shape interpretation.
Sampling rates, aggregation windows, retention policies, and visualisation choices
impose grammatical constraints on what can be seen and said about execution. As a
result, observability itself becomes a legitimate object of diagnosis.

The second-order diagnostics addresses this reflexive layer. It asks not only what
patterns appear in execution, but why certain patterns are visible while others are
obscured. Pattern succession is particularly vulnerable to distortion at this level. Later

" Existential Prognostics: Periodic Table of Diagnostic Patterns, Ibid., page 273



patterns may be amplified by observability tooling, while earlier enabling patterns are
suppressed or erased, leading diagnosticians to mistake consequences for causes.

Graphical and symbolic notation play a crucial role here by allowing comparison of
analyses rather than artefacts alone. Differences in notational structure or
diagrammatic composition can reveal differences in interpretive framing rather than
differences in execution. Second-order analysis patterns thus make explicit a
dimension of diagnostic practice that is otherwise tacit and error-prone.

Al as the Forcing Case

Artificial intelligence systems make explicit what was already implicit in complex
software systems: the collapse of correspondence as a foundation for diagnostics and
observability. In classical systems, artefacts could plausibly be treated as propositional
representations of execution state. In Al systems, this assumption fails outright. Internal
states such as embeddings, attention distributions, activation tensors, and learned
weights do not stand in a picture relation to execution facts in any meaningful sense.
They are not propositions, nor are they interpretable as such.

Observability in Al systems is therefore irreducibly indirect. Metrics, traces, and internal
signals acquire meaning only through comparative, statistical, and behavioural
interpretation. Explanations are rarely causal in a local sense; instead, they emerge
from patterns observed across runs, datasets, training phases, or model variants. As a
result, analysis patterns precede problem patterns even more strongly than in
traditional systems. Without explicit analysis patterns, such as baselining, behavioural
comparison, drift detection, or representational clustering, Al artefacts remain
uninterpretable noise.

Pattern succession also becomes more prominent in Al diagnostics. In systems driven
by learned representations, where world models and internal mappings replace simple
symbolic states, behavioural anomalies often trigger secondary effects such as
feedback loops, saturation, or representational collapse, producing sequences of
diagnostic patterns rather than isolated failures. Comparing models by structure and
stability rather than by performance alone is precisely what makes succession visible: a
pattern that initially perturbs an internal representation may restructure latent spaces,
lead to further cascading behaviours, or reshape the topology of model responses until
the system reaches a stable, but pathological state where no further diagnostically
meaningful variation is generated. This structural and topological view of internal model
behaviour, and the need to treat sequences of patterns as diagnostic objects, is central
to pattern-oriented observability in world models™.

12 pattern-Oriented Diagnostics and Observability of World Models: A Topological Perspective
(https://www.dumpanalysis.org/pattern-oriented-diagnostics-world-models-topological-perspective)



https://www.dumpanalysis.org/pattern-oriented-diagnostics-world-models-topological-perspective

Al systems thus act as a forcing case for Pattern-Oriented Diagnostics and
Observability. They demonstrate that diagnostics cannot be grounded in
correspondence semantics; rather, they must be understood as a grammar-governed
interpretive practice in which meaning arises from structured analysis, comparison,
and rule-following under extreme opacity.

Pattern-Oriented Diagnostics and Observability as a Philosophy of Engineering

The philosophical position advanced here can now be stated with precision. Execution
exhibits recurring structures that give rise to problem patterns, often unfolding in
structured succession. Diagnostics and observability, however, are not governed by
execution structure alone. They are governed by analysis patterns that function as
grammar, constraining how artefacts may be produced, transformed, interpreted,
ordered, and communicated.

This grammar is expressed through multiple representational forms: narrative
explanation, symbolic notation, and graphical diagrams. None of these representations
presents the facts of execution directly. Instead, they stabilise meaning within
diagnostic practice. Execution obeys structure; diagnostics and observability obey
practice.

By integrating problem patterns, analysis patterns, pattern succession, and explicit
grammatical representations, Pattern-Oriented Diagnostics and Observability
completes the philosophical arc from early to late Wittgenstein within engineering. It
preserves correspondence where it works, but situates it within a broader framework in
which meaning arises from rule-following, use, and disciplined interpretation under
partial observability.

Related Work

This work intersects with several bodies of research across philosophy, software
engineering, and systems diagnostics while remaining distinct in scope and emphasis.

In philosophy, it builds explicitly on the transition from early to late Wittgenstein,
particularly the shift from picture theory to use-based meaning. While Wittgenstein’s
later philosophy has been applied extensively to language, mathematics, and social
practices, its systematic application to engineering diagnostics and observability has
received little attention.

In software engineering, debugging and observability literature has traditionally focused
on tools, techniques, and heuristics. Patterns are typically treated as empirical best
practices rather than as grammatical structures that govern interpretation. This paper
departs from that tradition by reclassifying analysis patterns and their notation as
grammar rather than heuristics.



Observability research often emphasises signal correlation and visualisation while
underexamining how tooling shapes interpretation. Recent discussions of observability
bias address related issues but stop short of a philosophical account of observability as
grammar-producing infrastructure.

In Al diagnostics, interpretability and explainability research introduces new metrics
and visualisations but struggles with the absence of correspondence semantics. The
grammar-based approach proposed here offers a complementary perspective
grounded in analysis patterns, their notation, and rule-following practice.

Conclusion

As software systems outgrew the assumptions of classical debugging and naive
observability, the philosophical foundations of engineering diagnostics became visible.
Pattern-Oriented Diagnostics and Observability provides a coherent response by
distinguishing between patterns of failure and patterns of analysis, and by grounding
both in a Wittgensteinian account of grammar, rule-following, and use. The succession
of patterns observed in real systems is thereby understood not as a collection of
isolated symptoms, but as a structured diagnostic narrative governed by explicit
grammatical, notational, and diagrammatic constraints. Diagnostics and observability
emerge not as mere data collection or decoding, but as disciplined interpretive
practices under conditions of partial observability.



