
Dmitry Vostokov
Software Diagnostics Services

Linux Diagnostics

Defect

Detect

Version 2.0

Memory Thinking for C & C++
Linux Diagnostics

Slides with Descriptions and Source Code Illustrations

Second Edition

Dmitry Vostokov
Software Diagnostics Services

OpenTask

2

Memory Thinking for C & C++ Linux Diagnostics: Slides with Descriptions and Source Code Illustrations, Second

Edition

Published by OpenTask, Republic of Ireland

Copyright © 2024 by OpenTask

Copyright © 2024 by Dmitry Vostokov

Copyright © 2024 by Software Diagnostics Services

Copyright © 2024 by Dublin School of Security

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or

by any means, or used for training artificial intelligence systems without the prior written permission of the

publisher.

OpenTask books are available through booksellers and distributors worldwide. For further information or comments,

send requests to press@opentask.com.

Product and company names mentioned in this book may be trademarks of their owners.

A CIP catalog record for this book is available from the British Library.

ISBN-13: 978-1912636563 (Paperback)

Revision 2.00 (October 2024)

mailto:press@opentask.com

3

Table of Contents

Preface 11

About the Author 12

Introduction 13

Original Training Course Name 13

Prerequisites 13

Training Goals 14

Training Principles 14

Schedule 15

Training Idea 15

Version 2.0 Idea 16

General C & C++ Aspects 16

What We Do Not Cover 18

Linux C & C++ Aspects 18

Why C & C++? 19

Which C & C++? 20

My History of C & C++ 20

C and C++ Mastery Process 21

Thought Process 22

Philosophy of Pointers 23

Pointer 23

Pointer Dereference 24

One to Many 24

Many to One 25

Many to One Dereference 25

Invalid Pointer 26

Invalid Pointer Dereference 26

Wild (Dangling) Pointer 27

Pointer to Pointer 27

Pointer to Pointer Dereference 28

Naming Pointers and Entities 28

Names as Pointer Content 29

Pointers as Entities 29

Pointer Code Examples 30

Warning 31

Pointer 31

* Placement Style 33

Pointer Dereference 33

One to Many 35

Memory Leak 36

4

Many to One 38

Many to One Dereference 40

Invalid Pointer 41

Invalid Pointer Dereference 43

Wild (Dangling) Pointer 44

Pointer to Pointer 46

Pointer to Pointer Dereference 48

Undefined Behavior 49

Appendix 50

Memory and Pointers 51

Mental Exercise 52

Debugger Memory Layout 52

Memory Dereference Layout 53

Names as Addresses 53

Addresses and Entities 54

Addresses and Structures 54

Pointers to Structures 55

Arrays 55

Arrays and Pointers to Arrays 56

Strings and Pointers to Strings 57

Appendix 59

Basic Types 60

ASCII Characters and Pointers 61

Bytes and Pointers 62

Wide Characters and Pointers 63

Integers 64

Little-Endian System 65

Short Integers 66

Long and Long Long Integers 67

Signed and Unsigned Integers 68

Fixed Size Integers 69

Booleans 70

Bytes 71

Alignment (C11) 72

Alignment (C++11) 73

Size 74

LP64 75

Nothing and Anything 76

Automatic Type Inference 77

Appendix 78

Entity Conversion 80

Pointer Conversion (C-Style) 81

Pointer Conversion (C++) 82

Numeric Promotion/Conversion 83

5

Numeric Conversion 84

Incompatible Types 85

Forcing 86

Uniting 87

Appendix 89

Structures, Classes, and Objects 90

Structures 91

Access Level 92

Reading/Writing Private Fields 93

Classes and Objects 94

Structures and Classes 95

Pointer to Structure 96

Pointer to Structure Dereference 97

One to Many 98

Memory Leak 100

Many Pointers to One Structure 102

Many to One Dereference 103

Invalid Pointer to Structure 105

Invalid Pointer Dereference 107

Wild (Dangling) Pointer 108

Pointer to Pointer to Structure 111

Pointer to Pointer Dereference 112

Appendix 114

Memory and Structures 116

Addresses and Structures 117

Structure Field Access 118

Pointers to Structures 120

Pointers to Structure Fields 121

Structure Inheritance 124

Structure Slicing 125

Inheritance Access Level 127

Structures and Classes II 128

Reading/Writing Private Base 129

Internal Structure Alignment 130

Static Structure Fields 131

Appendix 132

Uniform Initialization 134

Old Initialization Ways 135

New Way {} 136

Uniform Structure Initialization 137

Static Field Initialization 139

Macros, Types, and Synonyms 140

Macros 141

Old Way 142

6

New Way 143

Enumerations 144

Old Way 145

New Way 146

Appendix 147

Memory Storage 148

Overview 149

Memory Regions 149

Dynamic Virtual Memory 150

Static Memory 150

Stack Memory 151

Thread Stack Frames 151

Local Variable Value Lifecycle 152

Scope 154

Stack Allocation Pitfalls 155

Explicit Local Allocation 156

Heap Memory 157

Dynamic Allocation (C-style) 158

Dynamic Allocation (C++) 158

Memory Expressions 159

Memory Operators 159

Local Pointers (Manual) 162

In-place Allocation 163

Useful GDB Commands 164

Appendix 165

Source Code Organisation 166

Logical Layer (Translation Units) 167

Physical Layer (Source Files) 167

Inter-TU Sharing 168

Classic Static TU Isolation 168

Namespace TU Isolation 169

Declaration and Definition 169

TU Definition Conflicts 170

Fine-grained TU Scope Isolation 171

Conceptual Layer (Design) 172

Incomplete Types 172

References 175

Type& vs. Type* 176

Values 177

Value Categories 178

Constant Values 179

Constant Expressions 181

Functions 182

Macro Functions 183

7

constexpr Functions 184

Pointers to Functions 185

Function Pointer Types 186

Reading Declarations 187

Structure Function Fields 188

Structure Methods 189

Structure Methods (Inlined) 190

Structure Methods (Inheritance) 191

Structure Virtual Methods 192

Structure Pure Virtual Methods 195

Structure as Interface 197

Function Structure 199

Structure Constructors 200

Structure Converting Constructors 201

Structure Delegating Constructors 202

Structure Member Initialization 204

Structure Copy Constructor 205

Copy vs. Move Semantics 206

Structure Move Constructors 207

Structure Copy Assignment 208

Structure Move Assignment 210

Structure Destructor 212

Structure Destructor Hierarchy 213

Structure Virtual Destructor 214

Structure Member Destruction 216

Destructor as a Method 217

Structure Default Operations 218

Structure Deleted Operations 219

Conversion Operators 221

Parameters by Value 222

Parameters by Pointer/Reference 224

Parameters by Ptr/Ref to Const 226

Parameters by Ref to Rvalue 228

Possible Mistake 229

Function Overloading 229

Default Arguments 230

Variadic Functions 231

Immutable Objects 232

Static Structure Functions 233

Lambdas 234

x64 CPU Registers 234

x64 Instructions and Registers 235

x64 Memory and Stack Addressing 235

x64 Memory Load Instructions 236

8

x64 Memory Store Instructions 236

x64 Flow Instructions 237

x64 Function Parameters 237

x64 Struct Function Parameters 238

A64 CPU Registers 238

A64 Instructions and Registers 239

A64 Memory and Stack Addressing 239

A64 Memory Load Instructions 240

A64 Memory Store Instructions 240

A64 Flow Instructions 241

A64 Function Parameters 241

A64 Struct Function Parameters 242

this 243

Function Objects vs. Lambdas 244

A64 Lambda Example 245

Captures and Closures 245

A64 Captures Examples 246

Lambdas as Parameters 247

A64 Lambda Parameter Example 248

Lambda Parameter Optimization 248

A64 Optimization Example 249

Lambdas as Unnamed Functions 250

std::function Lambda Parameters 251

auto Lambda Parameters 252

Lambdas as Return Values 253

Appendix 254

Virtual Function Call 257

VTBL Memory Layout 258

VPTR and Struct Memory Layout 258

Templates: A Planck-length Introduction 260

Why Templates? 261

Reusability 261

Types of Templates 262

Types of Template Parameters 263

Type Safety 264

Flexibility 265

Metafunctions 266

Variadic Templates 267

Iterators as Pointers 268

Containers 269

Iterators 269

Constant Iterators 270

Pointers as Iterators 271

Algorithms 272

9

Memory Ownership 274

Pointers as Owners 275

Problems with Pointer Owners 275

Smart Pointers 276

Basic Design 277

Unique Pointers 277

Descriptors as Unique Pointers 278

Shared Pointers 279

RAII 281

RAII Definition 282

RAII Advantages 282

File Descriptor RAII 283

Threads and Synchronization 285

Threads in C/C++ 286

Threads in C++ Proper 287

Synchronization Problems 288

Synchronization Solution 289

Memory-safe C++ Development 290

URSS Principle 290

Resources 291

C and C++ 291

Training (Linux C and C++) 292

