
lvalues, rvalues and pointers

Designed, written and illustrated by Dmitry Vostokov



lvalues and rvalues

 lvalue – writable memory location; has an address 

int a;

 rvalue – data at readable memory location or readonly 
value that doesn’t have an address

Transient (temporary) variable (register, means that we 
cannot change it’s value in C/C++, only to fetch)

constant (including addresses) 

5 = a; // error C2106: '=' : left operand must be l-value

&a = 0x4000;

int *b = &(&a); // error C2102: '&' requires l-value

 All lvalues are rvalues also because writable memory 
location is readable also



Transient (temporary) variables

 They are rvalues, don’t have permanent 
address

 Where expression value is a transient value
int a, n;  
int *pa;
a = n + 2; // n+2 doesn’t have an address
pa = &(n + 2); // error   
a = n; // n is rvalue but not transient
a = n = a; // n is lvalue and rvalue
 Mnemonics: rvalue – value on the right or readonly 

value



Pointers

 A variable that contains memory address. It has an 
address, writable and therefore lvalue.

 Pointers can point to any type
Type *pname = {opt initialization_expression }opt; 

int a;

int *pa = &a;

int *pa = { &a };

HWND *phWnd = &hWnd;

 The size of the pointer is 32 bits (on x86 Windows) and 
64-bit on x64 Windows



Pointers to pointers

int a = 2;

int *pa = &a;

int **ppa = &pa;

int ***pppa = &ppa;

&ppa &pa &a 2

apappapppa



Pointer assignment

 You can only assign pointer to pointer 
if they point to the same type:

int a; long b;

int *pa = &a;

int *pa2 = pa;  

pa = &b; // error &b has ‘long *’ type 



Dereferencing a pointer

 To access a value pointed to we use 
indirection (dereferencing) operator 
‘*’

int a, *pa = &a;

int val = *pa;  // val == a

int **ppa = &pa;

val = **ppa;



Tricky example

int a, *pa = &a;

pa = &(*pa); 

*pa is writable, we can write *pa = 1;

So it is lvalue and we can take address of it



More tricky stuff

Can the pointer contain it own address?

lea eax, pa

mov [pa], eax

Can we do the same in C/C++?

pa = &pa; // error, &pa has ‘int **’ type

00456000Address pa (00456000):



Answer to previous question

Yes, we can:

pa = (int *)&pa;

This is so called type conversion, more 
on this next time.



Type conversions (traditional 
casts)

00456000
int *ptr;

Address ptr (00456000):

1000000int a;

1000000int *pointer;

pointer = (int *)a;
mov eax, dword ptr [a]

mov dword ptr [pointer], eax

ptr = (int *)&ptr;

a = (int)pointer;



Pointers to const

const char ccA = ‘A’;

const char ccB = ‘B’;

// read declaration/definition from right to left  

const char *pcc = &ccA;   

*pcc = ‘B’;  // error   *pcc - rvalue

pcc = &ccB;



Const pointers

char ccA = ‘A’;

char ccB = ‘B’;

// read declaration/definition from right to left  

char * const pcc = &ccA;   

*pcc = ‘B’;  

pcc = &ccB;  // error - rvalue



Const pointers to const

const char ccA = ‘A’;

const char ccB = ‘B’;

// read declaration/definition from right to left  

const char * const pcc = &ccA;

*pcc = ‘B’;    // error    *pcc - rvalue

pcc = &ccB;  // error    pcc - rvalue



Const casts

const char ccA = ‘A’;

const char ccB = ‘B’;

// read declaration/definition from right to left  

const char * const pcc = &ccA;

*(char * const)pcc = ‘B’;      

(const char *)pcc = &ccB; // error

*&(const char *)pcc = &ccB; 



Arrays (one-dimensional)

 Type name[size] = { init_list } ;

int values[3] = { 0, 1, 2 };

5 5 5 5 5 5Address arr (00456880)

int arr[6]; 00456880int *pi = &arr[0];

arr is rvalue pi is lvalue



Array and pointer relationship

 Basic Rule

a[i] is equivalent to  *(a + i)  

5 5 5 5 5 5Address arr (00456880)

arr[2]arr[0]

&arr[2]   ==   arr + 2  ==  (int *)00456888

arr + 2 = address of arr + 2 * size of element in bytes



Strings

 char str[size];

 containes at most size-1 characters

 Empty string has str[0] == ‘\0’

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ 0Address str (00456880)

char str[6]; 00456880char *pStr = &str[0];

str is rvalue pStr is lvalue


