
Dmitry Vostokov

Software Diagnostics Services

Second Revised Version

Prerequisites

 Working C or classic C++ knowledge

 Basic assembly language knowledge

 Builds upon the book:

Practical Foundations of Windows Debugging, Disassembling, Reversing, 2nd Edition

© 2022 Software Diagnostics Services

http://www.patterndiagnostics.com/practical-foundations-windows-debugging-disassembling-reversing

Audience

 Novices

Improve x64 assembly language knowledge

 Experts

Learn the new pattern language approach

© 2022 Software Diagnostics Services

Pattern-Oriented RDR

 Complex crashes and hangs (victimware

analysis)

 Malware analysis

 Studying new products

© 2022 Software Diagnostics Services

https://www.patterndiagnostics.com/files/Victimware.pdf

Training Goals

 Review fundamentals

 Learn patterns and techniques

© 2022 Software Diagnostics Services

Training Principles

 Talk only about what I can show

 Lots of pictures

 Lots of examples

 Original content and examples

© 2022 Software Diagnostics Services

Course Idea

 Implicit memory leak resulted from wrong

API call parameter

 Debugging.TV episode 0x31

© 2022 Software Diagnostics Services

http://www.debugging.tv/

Part 1: Theory

© 2022 Software Diagnostics Services

Computation

CPU

Data Code

Memory Changes

© 2022 Software Diagnostics Services

Disassembly

Data/Code numbers

Data/Code symbolic

488d0d2cce0000 lea rcx,[CPUx64+0xe2f8 (00000001`3f85e2f8)] ; "Hello World!"

Annotated Disassembly memory analysis pattern

© 2022 Software Diagnostics Services

http://www.dumpanalysis.org/blog/index.php/2011/10/13/crash-dump-analysis-patterns-part-151/

The Problem of Reversing

 Compilation to Machine LanguageM

Language1 LanguageM Language2

 Decompilation

LanguageM ?

© 2022 Software Diagnostics Services

The Solution to Reversing

 Memory LanguageM Semantics

Language1 LanguageM Language2

 Decompilation

Understanding of LanguageM

© 2022 Software Diagnostics Services

The Reversing Tool

RSP

8

10

18

20

28

30

38

40

48

50

RAX

Memory Cell Diagrams

© 2022 Software Diagnostics Services

Idea when reading The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram book

Re(De)construction

 Time dimension: sequence diagrams

 Space dimension: component diagrams

How does it work temporally and structurally?

© 2022 Software Diagnostics Services

ADDR Patterns

 Accelerated

 Disassembly patterns

 De(Re)construction patterns

 Reversing patterns

© 2022 Software Diagnostics Services

ADDR Patterns (II)

 Accelerated

 Disassembly patterns

 Decompilation patterns

 Reconstruction patterns

© 2022 Software Diagnostics Services

ADDR Schemas

 Function Prologue → Function Epilogue

 Call Prologue → Function Call → Call Epilogue

 Potential Functionality → Call Skeleton → Call

Path

 Call Parameter → Function Parameter → Local

Variable

© 2022 Software Diagnostics Services

ADDR Implementations

ADDR Pattern Catalogue

Windows Mac OS X Linux

x86 x64 ARM

…

© 2022 Software Diagnostics Services

ARM64

Pattern Catalogues

 Elementary Software Diagnostics Patterns

 Memory Analysis Patterns

 Trace and Log Analysis Patterns

 Unified Debugging Patterns

 ADDR Patterns

© 2022 Software Diagnostics Services

https://www.dumpanalysis.org/elementary-diagnostics-patterns
http://www.patterndiagnostics.com/encyclopedia-crash-dump-analysis-patterns
http://www.patterndiagnostics.com/trace-log-analysis-pattern-reference
https://www.dumpanalysis.org/pattern-oriented-debugging-process

Pattern Orientation

 Pattern-Driven ADDR

 Pattern-Based ADDR

© 2022 Software Diagnostics Services

Part 2: Practice Exercises

© 2022 Software Diagnostics Services

Links

 Memory dumps:

Download links are in the exercise R0.

 Exercise Transcripts:

Included in this book.

© 2022 Software Diagnostics Services

Exercise R0

 Goal: Install WinDbg Preview or Debugging Tools for Windows, or

pull Docker image, and check that symbols are set up correctly

 \ADDR\Exercise-R0.pdf

© 2022 Software Diagnostics Services

Main CPU Registers

Illustrated in memory cell diagrams: \ADDR\MCD-R1.xlsx

 RAX  EAX  AX  {AH, AL}

 ALU: RAX, RDX

 Counter: RCX

 Memory copy: RSI (src), RDI (dst)

 Stack: RSP

 Next instruction: RIP

 New: R8 – R15, Rx(D|W|B)

© 2022 Software Diagnostics Services

Exercise R1

 Goal: Review x64 assembly fundamentals; learn how to reconstruct

stack trace manually

 ADDR Patterns: Universal Pointer, Symbolic Pointer S2,

Interpreted Pointer S3, Context Pyramid

 Memory Cell Diagrams: Register, Pointer, Stack Frame

 \ADDR\Exercise-R1.pdf

 \ADDR\MCD-R1.xlsx

© 2022 Software Diagnostics Services

Stack Reconstruction

1. Top frame from the current RIP1, RSP1 (r)

2. Disassemble around the current RIPn (ub or uf RIPn)*

3. Find out the beginning of the function prologue*

4. Check RSPn usage (sub, push) and count offsets

5. Get RIPn+1 for the next frame (dps RSPn + offset)

6. Get RSPn+1 for the next frame (RSPn + offset + 8)

7. ++n

8. goto #2

* If symbols are available, disassemble the function corresponding to RIPn (uf name)

© 2022 Software Diagnostics Services

ADDR: Universal Pointer

 A memory cell value interpreted as a pointer to memory cells

 A memory address that was not specifically designed as a pointer

© 2022 Software Diagnostics Services

ADDR: Symbolic Pointer, S2

 A memory cell value associated with a symbolic value from a

symbol file or a binary file (exported symbol)

© 2022 Software Diagnostics Services

ADDR: Interpreted Pointer, S3

 Interpretation of a memory cell pointer value and its symbol

 Implemented via a typed structure or debugger (extension)

command

© 2022 Software Diagnostics Services

ADDR: Context Pyramid

 When we move down stack trace frames, we can recover less and

less contextual memory information due to register and memory

overwrites

© 2022 Software Diagnostics Services

Exercise R2

 Goal: Learn how to map source code to disassembly

 ADDR Patterns: Potential Functionality, Function Skeleton,

Function Call, Call Path, Local Variable, Static Variable,

Pointer Dereference

 Memory Cell Diagrams: Pointer Dereference

 \ADDR\Exercise-R2.pdf

 \ADDR\MCD-R2.xlsx

© 2022 Software Diagnostics Services

ADDR: Potential Functionality

 A list of function symbols, for example, a list of imported functions, a

list of callbacks, a structure or table with function pointers

© 2022 Software Diagnostics Services

ADDR: Function Skeleton

 Function calls inside a function body

 Splits a function body into regions

 Helps in understanding a function

© 2022 Software Diagnostics Services

ADDR: Function Call

 Simply the call of a function

 Call or jmp instruction

© 2022 Software Diagnostics Services

ADDR: Call Path

 Following a sequence of Function Calls

 Example: call procA, call procC

…
call procA
call procB
…

procA:
…
call procC
…

© 2022 Software Diagnostics Services

ADDR: Local Variable

 A variable is a memory cell with an address

 A variable with stack region storage

 Usually, a local variable memory cell is referenced by stack pointer

or frame pointer registers

© 2022 Software Diagnostics Services

ADDR: Static Variable

 A variable is a memory cell with an address

 A variable with non-stack and non-register storage

 Usually, there is a direct memory reference

© 2022 Software Diagnostics Services

ADDR: Pointer Dereference

 A pointer is a memory cell that contains the address of (references)

another memory cell

 Dereference is a sequence of instructions to get a value from a

memory cell referenced by another memory cell

© 2022 Software Diagnostics Services

Exercise R3

 Goal: Learn a function structure and associated memory

operations

 ADDR Patterns: Function Prologue, Function Epilogue,

Variable Initialization, Memory Copy

 Memory Cell Diagrams: Function Prologue, Function

Epilogue

 \ADDR\Exercise-R3.pdf

 \ADDR\MCD-R3.xlsx

© 2022 Software Diagnostics Services

ADDR: Function Prologue

 The code emitted by a compiler that is necessary to set up the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: allocating memory on the stack for all local variables

© 2022 Software Diagnostics Services

ADDR: Function Epilogue

 The code emitted by a compiler that is necessary to finish the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: deallocating memory on the stack for all local variables

© 2022 Software Diagnostics Services

ADDR: Variable Initialization

 Code to initialize an individual local variable

 Not part of a function prologue

© 2022 Software Diagnostics Services

ADDR: Memory Copy

 Repeated memory move instructions

© 2022 Software Diagnostics Services

Exercise R4

 Goal: Learn how to recognize call and function parameters

and track their data flow

 ADDR Patterns: Call Prologue, Call Parameter, Call

Epilogue, Call Result, Control Path, Function Parameter,

Structure Field

 \ADDR\Exercise-R4.pdf

© 2022 Software Diagnostics Services

ADDR: Call Prologue

 The code emitted by a compiler that is necessary to set up a

function call and its parameters

© 2022 Software Diagnostics Services

ADDR: Call Parameter

 Data passed to a function before a function call

© 2022 Software Diagnostics Services

ADDR: Call Epilogue

 The code emitted by a compiler to finish a function call and its

return results

© 2022 Software Diagnostics Services

ADDR: Call Result

 Data returned by a function

© 2022 Software Diagnostics Services

ADDR: Control Path

 A possible execution path inside a function consisting of direct and

conditional jumps

© 2022 Software Diagnostics Services

ADDR: Function Parameter

 Data passed to a function inside a function (on the receiver side)

 Such a parameter can be translated to a local variable if passed by

stack or copied to a stack location

© 2022 Software Diagnostics Services

ADDR: Structure Field

 An offset to the structure memory address

© 2022 Software Diagnostics Services

Exercise R5

 Goal: Master memory cell diagrams as an aid to

understanding complex disassembly logic

 ADDR Patterns: Last Call, Loop, Memory Copy

 Memory Cell Diagrams: Memory Copy

 \ADDR\Exercise-R5.pdf

 \ADDR\MCD-R5.xlsx

© 2022 Software Diagnostics Services

ADDR: Last Call

 A function possibly called before the current instruction pointer

© 2022 Software Diagnostics Services

ADDR: Loop

 An unconditional jump to the previous code address

© 2022 Software Diagnostics Services

Exercise R6

 Goal: Learn how to map code to execution residue and

reconstruct past behaviour; recognise previously introduced

ADDR patterns in the context of compiled classic C++ code

 ADDR Patterns: Separator Frames, Virtual Call

 Memory Cell Diagrams: Virtual Call

 \ADDR\Exercise-R6.pdf

 \ADDR\MCD-R6.xlsx

© 2022 Software Diagnostics Services

ADDR: Separator Frames

 Frames that divide a stack trace into separate analysis units

© 2022 Software Diagnostics Services

ADDR: Virtual Call

 A call through virtual function table structure field

 Usually involves a double Pointer Dereference

© 2022 Software Diagnostics Services

Live Debugging Techniques

 ADDR Patterns: Component Dependencies, API Trace, Fibre

Bundle (trace and log analysis pattern)

 Some dependencies can be learnt from crash dump stack traces

 Debugging.TV / YouTube

 Live debugging training: Accelerated Windows Debugging4

© 2022 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
http://www.debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.patterndiagnostics.com/accelerated-windows-debugging-book

Memory Analysis Patterns

Regular Data

Injected Symbols

Execution Residue

Rough Stack Trace

Annotated Disassembly

Historical Information

© 2022 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2012/02/12/crash-dump-analysis-patterns-part-167/
https://www.dumpanalysis.org/blog/index.php/2013/02/27/crash-dump-analysis-patterns-part-197/
https://www.dumpanalysis.org/blog/index.php/2008/04/29/crash-dump-analysis-patterns-part-60/
https://www.dumpanalysis.org/blog/index.php/2014/10/07/crash-dump-analysis-patterns-part-213/
https://www.dumpanalysis.org/blog/index.php/2011/10/13/crash-dump-analysis-patterns-part-151/
https://www.dumpanalysis.org/blog/index.php/2007/11/06/crash-dump-analysis-patterns-part-34/

Resources

 WinDbg Help / WinDbg.org (quick links)

 DumpAnalysis.org / SoftwareDiagnostics.Institute

 PatternDiagnostics.com

 Debugging.TV / YouTube.com/DebuggingTV / YouTube.com/PatternDiagnostics

 Practical Foundations of Windows Debugging, Disassembling, Reversing, Second Edition

 Memory Dump Analysis Anthology (Diagnomicon)

© 2022 Software Diagnostics Services

http://www.windbg.org/
http://www.dumpanalysis.org/
http://softwarediagnostics.institute/
http://www.patterndiagnostics.com/
http://debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.youtube.com/PatternDiagnostics
https://www.patterndiagnostics.com/practical-foundations-windows-debugging-disassembling-reversing
https://www.patterndiagnostics.com/mdaa-volumes

Q&A

Please send your feedback using the contact

form on PatternDiagnostics.com

© 2022 Software Diagnostics Services

https://s/www.patterndiagnostics.com/

Thank you for attendance!

© 2022 Software Diagnostics Services

